-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththeories-Reals.shtml
290 lines (241 loc) · 8.39 KB
/
theories-Reals.shtml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!--
Design by http://www.bluewebtemplates.com
Released for free under a Creative Commons Attribution 3.0 License
-->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>SMT-LIB The Satisfiability Modulo Theories Library</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link href="style.css" rel="stylesheet" type="text/css" />
<!-- CuFon: Enables smooth pretty custom font rendering. 100% SEO friendly. To disable, remove this section -->
<script type="text/javascript" src="js/cufon-yui.js"></script>
<script type="text/javascript" src="js/arial.js"></script>
<script type="text/javascript" src="js/cuf_run.js"></script>
<!-- CuFon ends -->
<link href="code-prettify/prettify.css" type="text/css" rel="stylesheet" />
<script src="code-prettify/run_prettify.js?lang=smtlib&skin=desert"></script>
</head>
<body>
<div class="main">
<div class="header">
<div class="header_resize">
<div class="menu_nav">
<ul>
<li><a href="index.shtml">Home</a></li>
<li><a href="about.shtml">About</a></li>
<li><a href="news.shtml">News</a></li>
<li class="active"><a href="standard.shtml">Standard</a></li>
<li><a href="benchmarks.shtml">Benchmarks</a></li>
<li><a href="software.shtml">Software</a></li>
<li><a href="credits.shtml">Credits</a></li>
</ul>
</div>
<div class="clr"></div>
<div class="logo">
<h1><a href="index.shtml">SMT-LIB <br/>
<small>The Satisfiability Modulo Theories Library</small></a>
</h1>
</div>
</div>
</div>
<div class="content">
<div class="content_resize">
<div class="mainbar">
<h2>Reals</h2>
<pre class="prettyprint lang-smtlib">
(theory Reals
:smt-lib-version 2.7
:smt-lib-release "2024-07-21"
:written-by "Cesare Tinelli"
:date "2010-04-17"
:last-updated "2024-07-21"
:update-history
"Note: history only accounts for content changes, not release changes.
2024-07-21 Updated to Version 2.7.
2017-05-08 Fixed error in note on intepretation of (/t 0).
2016-04-20 Minor formatting of notes fields.
2015-04-25 Updated to Version 2.5.
2012-06-20 Modified the definition of :value attribute to include abstract values
for irrational algebraic numbers.
"
:sorts ((Real 0))
:funs ((NUMERAL Real)
(DECIMAL Real)
(- Real Real) ; negation
(- Real Real Real :left-assoc) ; subtraction
(+ Real Real Real :left-assoc)
(* Real Real Real :left-assoc)
(/ Real Real Real :left-assoc)
(<= Real Real Bool :chainable)
(< Real Real Bool :chainable)
(>= Real Real Bool :chainable)
(> Real Real Bool :chainable)
)
:values
"The set of values for the sort Real consists of
- an abstract value for each irrational algebraic number
- all numerals
- all terms of the form (- n) where n is a numeral other than 0
- all terms of the form (/ m n) or (/ (- m) n) where
- m is a numeral other than 0,
- n is a numeral other than 0 and 1,
- as integers, m and n have no common factors besides 1.
"
:definition
"For every expanded signature Sigma, the instance of Reals with that
signature is the theory consisting of all Sigma-models that interpret
- the sort Real as the set of all real numbers,
- each numeral as the corresponding real number,
- each decimal as the corresponding real number,
- / as a total function that coincides with the real division function
for all inputs x and y where y is non-zero,
- the other function symbols of Reals as expected.
"
:notes
"Since in SMT-LIB logic all function symbols are interpreted as total
functions, terms of the form (/ t 0) *are* meaningful in every
instance of Reals. However, the declaration imposes no constraints
on their value. This means in particular that
- for every instance theory T and
- for every value v (as defined in the :values attribute) and
closed term t of sort Real,
there is a model of T that satisfies (= v (/ t 0)).
"
:notes
"The restriction of Reals over the signature having just the symbols
(0 Real)
(1 Real)
(- Real Real)
(+ Real Real Real)
(* Real Real Real)
(<= Real Real Bool)
(< Real Real Bool)
coincides with the theory of real closed fields, axiomatized by
the formulas below:
- associativity of +
(forall ((x Real) (y Real) (z Real))
(= (+ (+ x y) z) (+ x (+ y z))))
- commutativity of +
(forall ((x Real) (y Real))
(= (* x y) (* y x)))
- 0 is the right (and by commutativity, left) unit of +
(forall ((x Real)) (= (+ x 0) x))
- right (and left) inverse wrt +
(forall ((x Real)) (= (+ x (- x)) 0))
- associativity of *
(forall ((x Real) (y Real) (z Real))
(= (* (* x y) z) (* x (* y z))))
- commutativity of *
(forall ((x Real) (y Real)) (= (* x y) (* y x)))
- 1 is the right (and by commutativity, left) unit of *
(forall ((x Real)) (= (* x 1) x))
- existence of right (and left) inverse wrt *
(forall ((x Real))
(or (= x 0) (exists (y Real) (= (* x y) 1))))
- left distributivity of * over +
(forall ((x Real) (y Real) (z Real))
(= (* x (+ y z)) (+ (* x y) (* x z))))
- right distributivity of * over +
(forall ((x Real) (y Real) (z Real))
(= (* (+ x y) z) (+ (* x z) (* y z))))
- non-triviality
(distinct 0 1)
- all positive elements have a square root
(forall (x Real)
(exists (y Real) (or (= x (* y y)) (= (- x) (* y y)))))
- axiom schemas for all n > 0
(forall (x_1 Real) ... (x_n Real)
(distinct (+ (* x_1 x_1) (+ ... (* x_n x_n)))
(- 1)))
- axiom schemas for all odd n > 0 where (^ y n) abbreviates
the n-fold product of y with itself
(forall (x_1 Real) ... (x_n Real)
(exists (y Real)
(= 0
(+ (^ y n) (+ (* x_1 (^ y n-1)) (+ ... (+ (* x_{n-1} y) x_n)))))))
- reflexivity of <=
(forall (x Real) (<= x x))
- antisymmetry of <=
(forall (x Real) (y Real)
(=> (and (<= x y) (<= y x))
(= x y)))
- transitivity of <=
(forall (x Real) (y Real) (z Real)
(=> (and (<= x y) (<= y z))
(<= x z)))
- totality of <=
(forall (x Real) (y Real)
(or (<= x y) (<= y x)))
- monotonicity of <= wrt +
(forall (x Real) (y Real) (z Real)
(=> (<= x y) (<= (+ x z) (+ y z))))
- monotonicity of <= wrt *
(forall (x Real) (y Real) (z Real)
(=> (and (<= x y) (<= 0 z))
(<= (* z x) (* z y))))
- definition of <
(forall (x Real) (y Real)
(= (< x y) (and (<= x y) (distinct x y))))
References:
1) W. Hodges. Model theory. Cambridge University Press, 1993.
2) PlanetMath, http://planetmath.org/encyclopedia/RealClosedFields.html
"
)
</pre>
(<a href="Theories/Reals.smt2">raw file</a>)
<br>
<br>
</div>
<div class="sidebar">
<div class="gadget">
<ul class="sb_menu">
<li><a href="index.shtml">Home</a></li>
<li><a href="about.shtml">About</a></li>
<li><a href="news.shtml">News</a></li>
<li>Standard
<ul class="ex_menu">
<li><a href="language.shtml">Language</a>
<li><a href="theories.shtml">Theories</a>
<li><a href="logics.shtml">Logics</a>
<li><a href="examples.shtml">Examples</a>
</ul>
</li>
<li><a href="benchmarks.shtml">Benchmarks</a></li>
<li>Software
<ul class="ex_menu">
<li><a href="solvers.shtml">Solvers</a></li>
<li><a href="utilities.shtml">Utilities</a></li>
</ul>
</li>
<li><a href="contact.shtml">Contact</a></li>
<li><a href="related.shtml">Related</a></li>
<li><a href="credits.shtml">Credits</a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="clr"></div>
<div class="footer">
<div class="footer_resize">
<p class="lf">
© Copyright The SMT-LIB Initiative <br>
Based on a design by
Blue <a href="http://www.bluewebtemplates.com">Web Templates</a>
</p>
<ul class="fmenu">
<li><a href="index.shtml">Home</a></li>
<li><a href="about.shtml">About</a></li>
<li><a href="news.shtml">News</a></li>
<li class="active"><a href="standard.shtml">Standard</a></li>
<li><a href="benchmarks.shtml">Benchmarks</a></li>
<li><a href="software.shtml">Software</a></li>
<li><a href="credits.shtml">Credits</a></li>
</ul>
<div class="clr"></div>
</div>
</div>
</div>
</body>
</html>