-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathOptions.h
311 lines (248 loc) · 8.26 KB
/
Options.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#ifndef _PARSER_OPTIONS_
#define _PARSER_OPTIONS_
#pragma once
#include <string>
#include <fstream>
#include <vector>
#include <iostream>
using namespace std;
class Options
{
public:
/**
* Refuse to train on words which have a corpus frequency less than
* this number.
*/
int wordCutOff;
/**
* Refuse to train on features which have a corpus frequency less than
* this number.
*/
int featCutOff;
/**
* Refuse to train on chars which have a corpus frequency less than
* this number.
*/
int charCutOff;
/**
* Model weights will be initialized to random values within the
* range {@code [-initRange, initRange]}.
*/
double initRange;
/**
* Maximum number of iterations for training
*/
int maxIter;
/**
* Size of mini-batch for training. A random subset of training
* examples of this size will be used to train the classifier on each
* iteration.
*/
int batchSize;
/**
* An epsilon value added to the denominator of the AdaGrad
* expression for numerical stability
*/
double adaEps;
/**
* Initial global learning rate for AdaGrad training
*/
double adaAlpha;
/**
* NN Regularization parameter. All weight updates are scaled by this
* single parameter.
*/
double regParameter;
/**
* Dropout probability. For each training example we randomly choose
* some amount of units to disable in the neural network classifier.
* This probability controls the proportion of units "dropped out."
*/
double dropProb;
/**
* Size of the neural network hidden layer.
*/
int wordHiddenSize;
int charHiddenSize;
int rnnHiddenSize;
int hiddenSize;
int wordEmbSize;
int wordcontext;
int charcontext;
int charEmbSize;
bool wordEmbFineTune;
bool charEmbFineTune;
int verboseIter;
bool saveIntermediate;
bool train;
int maxInstance;
vector<string> testFiles;
string outBest;
int rnnFunc;
int lstmFunc;
int cnnFunc;
int relu; //0, no relu; 1, max(0,x); 2, leaky; 3, soft
int hislinear;
int removePool;
int removeCharPool;
bool seg;
Options()
{
wordCutOff = 0;
featCutOff = 0;
charCutOff = 0;
initRange = 0.01;
maxIter = 1000;
batchSize = 1;
adaEps = 1e-6;
adaAlpha = 0.01;
regParameter = 1e-8;
dropProb = 0.0;
wordHiddenSize = 200;
charHiddenSize = 100;
rnnHiddenSize = 100;
hiddenSize = 100;
wordcontext = 1;
wordEmbSize = 50;
charcontext = 1;
charEmbSize = 10;
wordEmbFineTune = false;
charEmbFineTune = true;
verboseIter = 100;
saveIntermediate = true;
train = false;
maxInstance = -1;
testFiles.clear();
outBest = "";
rnnFunc = 0;
lstmFunc = 0;
cnnFunc = 0;
relu = 0;
hislinear = 1;
removePool = 0;
removeCharPool = 0;
seg = true;
}
virtual ~Options()
{
}
void setOptions(const vector<string> &vecOption)
{
int i = 0;
for (; i < vecOption.size(); ++i) {
pair<string, string> pr;
string2pair(vecOption[i], pr, '=');
if (pr.first == "wordCutOff") wordCutOff = atoi(pr.second.c_str());
if (pr.first == "featCutOff") featCutOff = atoi(pr.second.c_str());
if (pr.first == "charCutOff") charCutOff = atoi(pr.second.c_str());
if (pr.first == "initRange") initRange = atof(pr.second.c_str());
if (pr.first == "maxIter") maxIter = atoi(pr.second.c_str());
if (pr.first == "batchSize") batchSize = atoi(pr.second.c_str());
if (pr.first == "adaEps") adaEps = atof(pr.second.c_str());
if (pr.first == "adaAlpha") adaAlpha = atof(pr.second.c_str());
if (pr.first == "regParameter") regParameter = atof(pr.second.c_str());
if (pr.first == "dropProb") dropProb = atof(pr.second.c_str());
if (pr.first == "wordHiddenSize") wordHiddenSize = atoi(pr.second.c_str());
if (pr.first == "charHiddenSize") charHiddenSize = atoi(pr.second.c_str());
if (pr.first == "rnnHiddenSize") rnnHiddenSize = atoi(pr.second.c_str());
if (pr.first == "hiddenSize") hiddenSize = atoi(pr.second.c_str());
if (pr.first == "wordcontext") wordcontext = atoi(pr.second.c_str());
if (pr.first == "charcontext") charcontext = atoi(pr.second.c_str());
if (pr.first == "wordEmbSize") wordEmbSize = atoi(pr.second.c_str());
if (pr.first == "charEmbSize") charEmbSize = atoi(pr.second.c_str());
if (pr.first == "wordEmbFineTune")
{
if(pr.second == "true") wordEmbFineTune = true;
else wordEmbFineTune = false;
}
if (pr.first == "charEmbFineTune")
{
if(pr.second == "true") charEmbFineTune = true;
else charEmbFineTune = false;
}
if (pr.first == "verboseIter") verboseIter = atoi(pr.second.c_str());
if (pr.first == "train")
{
if(pr.second == "true") train = true;
else train = false;
}
if (pr.first == "saveIntermediate")
{
if(pr.second == "true") saveIntermediate = true;
else saveIntermediate = false;
}
if (pr.first == "maxInstance") maxInstance = atoi(pr.second.c_str());
if (pr.first == "testFile") testFiles.push_back(pr.second);
if (pr.first == "outBest") outBest = pr.second;
if (pr.first == "rnnFunc") rnnFunc = atoi(pr.second.c_str());
if (pr.first == "lstmFunc") lstmFunc = atoi(pr.second.c_str());
if (pr.first == "cnnFunc") cnnFunc = atoi(pr.second.c_str());
if (pr.first == "relu") relu = atoi(pr.second.c_str());
if (pr.first == "hislinear") hislinear = atoi(pr.second.c_str());
if (pr.first == "removePool") removePool = atoi(pr.second.c_str());
if (pr.first == "removeCharPool") removeCharPool = atoi(pr.second.c_str());
if (pr.first == "seg")
{
if(pr.second == "true") seg = true;
else seg = false;
}
}
}
void showOptions() {
std::cout << "wordCutOff = " << wordCutOff << std::endl;
std::cout << "featCutOff = " << featCutOff << std::endl;
std::cout << "charCutOff = " << charCutOff << std::endl;
std::cout << "initRange = " << initRange << std::endl;
std::cout << "maxIter = " << maxIter << std::endl;
std::cout << "batchSize = " << batchSize << std::endl;
std::cout << "adaEps = " << adaEps << std::endl;
std::cout << "adaAlpha = " << adaAlpha << std::endl;
std::cout << "regParameter = " << regParameter << std::endl;
std::cout << "dropProb = " << dropProb << std::endl;
std::cout << "wordHiddenSize = " << wordHiddenSize << std::endl;
std::cout << "charHiddenSize = " << charHiddenSize << std::endl;
std::cout << "rnnHiddenSize = " << rnnHiddenSize << std::endl;
std::cout << "hiddenSize = " << hiddenSize << std::endl;
std::cout << "wordEmbSize = " << wordEmbSize << std::endl;
std::cout << "wordcontext = " << wordcontext << std::endl;
std::cout << "charEmbSize = " << charEmbSize << std::endl;
std::cout << "charcontext = " << charcontext << std::endl;
std::cout << "wordEmbFineTune = " << wordEmbFineTune << std::endl;
std::cout << "charEmbFineTune = " << charEmbFineTune << std::endl;
std::cout << "verboseIter = " << verboseIter << std::endl;
std::cout << "saveItermediate = " << saveIntermediate << std::endl;
std::cout << "train = " << train << std::endl;
std::cout << "maxInstance = " << maxInstance << std::endl;
for(int idx = 0; idx < testFiles.size(); idx++)
{
std::cout << "testFile = " << testFiles[idx] << std::endl;
}
std::cout << "outBest = " << outBest << std::endl;
std::cout << "rnnFunc = " << rnnFunc << std::endl;
std::cout << "lstmFunc = " << lstmFunc << std::endl;
std::cout << "cnnFunc = " << cnnFunc << std::endl;
std::cout << "relu = " << relu << std::endl;
std::cout << "hislinear = " << hislinear << std::endl;
std::cout << "removePool = " << removePool << std::endl;
std::cout << "removeCharPool = " << removeCharPool << std::endl;
std::cout << "seg = " << seg << std::endl;
}
void load(const std::string& infile)
{
ifstream inf;
inf.open(infile.c_str());
vector<string> vecLine;
while (1)
{
string strLine;
if (!my_getline(inf, strLine)) {
break;
}
if (strLine.empty()) continue;
vecLine.push_back(strLine);
}
inf.close();
setOptions(vecLine);
}
};
#endif