-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
eval_infer_batch.py
207 lines (166 loc) · 7.17 KB
/
eval_infer_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import sys
sys.path.append(os.getcwd())
import argparse
import time
from importlib.resources import files
import torch
import torchaudio
from accelerate import Accelerator
from tqdm import tqdm
from f5_tts.eval.utils_eval import (
get_inference_prompt,
get_librispeech_test_clean_metainfo,
get_seedtts_testset_metainfo,
)
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
from f5_tts.model import CFM, DiT, UNetT
from f5_tts.model.utils import get_tokenizer
accelerator = Accelerator()
device = f"cuda:{accelerator.process_index}"
# --------------------- Dataset Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
win_length = 1024
n_fft = 1024
target_rms = 0.1
rel_path = str(files("f5_tts").joinpath("../../"))
def main():
# ---------------------- infer setting ---------------------- #
parser = argparse.ArgumentParser(description="batch inference")
parser.add_argument("-s", "--seed", default=None, type=int)
parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
parser.add_argument("-n", "--expname", required=True)
parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
parser.add_argument("-m", "--mel_spec_type", default="vocos", type=str, choices=["bigvgan", "vocos"])
parser.add_argument("-to", "--tokenizer", default="pinyin", type=str, choices=["pinyin", "char"])
parser.add_argument("-nfe", "--nfestep", default=32, type=int)
parser.add_argument("-o", "--odemethod", default="euler")
parser.add_argument("-ss", "--swaysampling", default=-1, type=float)
parser.add_argument("-t", "--testset", required=True)
args = parser.parse_args()
seed = args.seed
dataset_name = args.dataset
exp_name = args.expname
ckpt_step = args.ckptstep
ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
mel_spec_type = args.mel_spec_type
tokenizer = args.tokenizer
nfe_step = args.nfestep
ode_method = args.odemethod
sway_sampling_coef = args.swaysampling
testset = args.testset
infer_batch_size = 1 # max frames. 1 for ddp single inference (recommended)
cfg_strength = 2.0
speed = 1.0
use_truth_duration = False
no_ref_audio = False
if exp_name == "F5TTS_Base":
model_cls = DiT
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
elif exp_name == "E2TTS_Base":
model_cls = UNetT
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
if testset == "ls_pc_test_clean":
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)
elif testset == "seedtts_test_zh":
metalst = rel_path + "/data/seedtts_testset/zh/meta.lst"
metainfo = get_seedtts_testset_metainfo(metalst)
elif testset == "seedtts_test_en":
metalst = rel_path + "/data/seedtts_testset/en/meta.lst"
metainfo = get_seedtts_testset_metainfo(metalst)
# path to save genereted wavs
output_dir = (
f"{rel_path}/"
f"results/{exp_name}_{ckpt_step}/{testset}/"
f"seed{seed}_{ode_method}_nfe{nfe_step}_{mel_spec_type}"
f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
f"_cfg{cfg_strength}_speed{speed}"
f"{'_gt-dur' if use_truth_duration else ''}"
f"{'_no-ref-audio' if no_ref_audio else ''}"
)
# -------------------------------------------------#
use_ema = True
prompts_all = get_inference_prompt(
metainfo,
speed=speed,
tokenizer=tokenizer,
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
mel_spec_type=mel_spec_type,
target_rms=target_rms,
use_truth_duration=use_truth_duration,
infer_batch_size=infer_batch_size,
)
# Vocoder model
local = False
if mel_spec_type == "vocos":
vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
elif mel_spec_type == "bigvgan":
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)
# Tokenizer
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
# Model
model = CFM(
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
if not os.path.exists(output_dir) and accelerator.is_main_process:
os.makedirs(output_dir)
# start batch inference
accelerator.wait_for_everyone()
start = time.time()
with accelerator.split_between_processes(prompts_all) as prompts:
for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
ref_mels = ref_mels.to(device)
ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)
# Inference
with torch.inference_mode():
generated, _ = model.sample(
cond=ref_mels,
text=final_text_list,
duration=total_mel_lens,
lens=ref_mel_lens,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
no_ref_audio=no_ref_audio,
seed=seed,
)
# Final result
for i, gen in enumerate(generated):
gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
gen_mel_spec = gen.permute(0, 2, 1).to(torch.float32)
if mel_spec_type == "vocos":
generated_wave = vocoder.decode(gen_mel_spec).cpu()
elif mel_spec_type == "bigvgan":
generated_wave = vocoder(gen_mel_spec).squeeze(0).cpu()
if ref_rms_list[i] < target_rms:
generated_wave = generated_wave * ref_rms_list[i] / target_rms
torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
timediff = time.time() - start
print(f"Done batch inference in {timediff / 60 :.2f} minutes.")
if __name__ == "__main__":
main()