-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathquick_test.py
57 lines (46 loc) · 1.82 KB
/
quick_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from model.blindsr import BlindSR
import torch
import numpy as np
import imageio
import argparse
import os
import utility
import cv2
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--img_dir', type=str, default='D:/LongguangWang/Data/test.png',
help='image directory')
parser.add_argument('--scale', type=str, default='2',
help='super resolution scale')
parser.add_argument('--resume', type=int, default=600,
help='resume from specific checkpoint')
parser.add_argument('--blur_type', type=str, default='iso_gaussian',
help='blur types (iso_gaussian | aniso_gaussian)')
return parser.parse_args()
def main():
args = parse_args()
if args.blur_type == 'iso_gaussian':
dir = './experiment/blindsr_x' + str(int(args.scale[0])) + '_bicubic_iso'
elif args.blur_type == 'aniso_gaussian':
dir = './experiment/blindsr_x' + str(int(args.scale[0])) + '_bicubic_aniso'
# path to save sr images
save_dir = dir + '/results'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
DASR = BlindSR(args).cuda()
DASR.load_state_dict(torch.load(dir + '/model/model_' + str(args.resume) + '.pt'), strict=False)
DASR.eval()
lr = imageio.imread(args.img_dir)
lr = np.ascontiguousarray(lr.transpose((2, 0, 1)))
lr = torch.from_numpy(lr).float().cuda().unsqueeze(0).unsqueeze(0)
# inference
sr = DASR(lr[:, 0, ...])
sr = utility.quantize(sr, 255.0)
# save sr results
img_name = args.img_dir.split('.png')[0].split('/')[-1]
sr = np.array(sr.squeeze(0).permute(1, 2, 0).data.cpu())
sr = sr[:, :, [2, 1, 0]]
cv2.imwrite(save_dir + '/' + img_name + '_sr.png', sr)
if __name__ == '__main__':
with torch.no_grad():
main()