Skip to content

Latest commit

ย 

History

History
142 lines (107 loc) ยท 3.79 KB

README.md

File metadata and controls

142 lines (107 loc) ยท 3.79 KB

๐Ÿฉบ Smart Health - Disease Prediction using Data Mining ๐Ÿง ๐Ÿ’ป

This project, Smart Health, uses data mining techniques to predict diseases based on patient symptoms. It employs the Random Forest Classifier as the primary machine learning model and provides a user-friendly interface powered by Streamlit. ๐ŸŒŸ Screenshot 2024-12-02 145325


๐Ÿ“š Table of Contents

  1. ๐Ÿ“– Overview
  2. โœจ Features
  3. ๐Ÿ“‚ Project Structure
  4. โš™๏ธ Setup Instructions
  5. ๐Ÿš€ Usage
  6. ๐Ÿ› ๏ธ Technologies Used
  7. ๐Ÿ“Š Dataset
  8. ๐Ÿ™ Acknowledgements

๐Ÿ“– Overview

Smart Health is a machine learning-based web application designed to assist in diagnosing diseases. It uses a dataset of patient symptoms to train a predictive model and provides insights into the likelihood of various diseases. ๐Ÿงฌ

Key Highlights:

  • ๐Ÿ” High-accuracy predictions using Random Forest.
  • ๐ŸŒ A Streamlit-based interactive and intuitive web application.

โœจ Features

  • โœ… Train and save machine learning models with ease.
  • ๐Ÿ“ˆ Evaluate model performance on validation and test data.
  • ๐Ÿ”ฎ Predict diseases based on symptoms or test datasets.
  • ๐Ÿ–ฅ๏ธ User-friendly and interactive UI for non-technical users.

๐Ÿ“‚ Project Structure

smart_health/
โ”‚
โ”œโ”€โ”€ dataset/
โ”‚   โ”œโ”€โ”€ training_data.csv    # ๐Ÿ“„ Training dataset
โ”‚   โ”œโ”€โ”€ test_data.csv        # ๐Ÿ“„ Test dataset
โ”‚
โ”œโ”€โ”€ saved_model/
โ”‚   โ””โ”€โ”€ random_forest.joblib # ๐Ÿ› ๏ธ Saved model
โ”‚
โ”œโ”€โ”€ venv/                    # ๐ŸŒ Python virtual environment
โ”‚
โ”œโ”€โ”€ app.py                   # ๐Ÿ–ฅ๏ธ Streamlit app file
โ”œโ”€โ”€ config.yaml              # โš™๏ธ Configuration file
โ”œโ”€โ”€ main.py                  # ๐Ÿง  Script for training the model
โ”œโ”€โ”€ test_model.py            # ๐Ÿ”ฌ Script for testing the model
โ”œโ”€โ”€ requirements.txt         # ๐Ÿ“ฆ Python dependencies

โš™๏ธ Setup Instructions

  1. Clone the repository:

    git clone <repository-url>
    cd smart_health
  2. Create a virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies:

    pip install -r requirements.txt
  4. Update the configuration: Edit the config.yaml file to specify paths for datasets, saved models, and other parameters. ๐Ÿ“

  5. Run the application:

    streamlit run app.py

๐Ÿš€ Usage

๐Ÿง  Training the Model

  1. Specify the model type (e.g., Random Forest) in main.py.
  2. Run the script:
    python main.py
    The trained model will be saved in the saved_model/ directory. ๐Ÿ› ๏ธ

๐Ÿ”ฌ Testing the Model

Evaluate the model's performance using test_model.py:

python test_model.py

๐ŸŒ Using the Streamlit App

Launch the app:

streamlit run app.py

Use the web interface to make disease predictions. ๐Ÿ–ฅ๏ธโœจ


๐Ÿ› ๏ธ Technologies Used

  • Python ๐Ÿ: Core programming language.
  • Streamlit ๐ŸŒ: For building the web interface.
  • Scikit-learn ๐Ÿ“š: For machine learning models.
  • Pandas ๐Ÿผ: For data manipulation.
  • PyYAML ๐Ÿ“: For configuration management.

๐Ÿ“Š Dataset

The project uses two datasets:

  1. training_data.csv: ๐Ÿ“„ Dataset for training the model.
  2. test_data.csv: ๐Ÿ“„ Dataset for testing the model.

Each dataset includes:

  • ๐Ÿฉบ Patient symptoms (features).
  • ๐Ÿฅ Disease prognosis (labels).

๐Ÿ™ Acknowledgements

  • ๐Ÿ“˜ Scikit-learn Documentation for machine learning references.
  • ๐ŸŒŸ Streamlit Community for guidance on app development.