forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DistributionTemplates.h
671 lines (607 loc) · 27.4 KB
/
DistributionTemplates.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
#pragma once
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/ExpandBase.h>
#include <ATen/OpMathType.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Loops.cuh>
#include <c10/util/Half.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/cuda/CUDAGraphsUtils.cuh>
#include <ATen/detail/FunctionTraits.h>
#include <ATen/core/DistributionsHelper.h>
#include <curand.h>
#include <curand_kernel.h>
#include <curand_philox4x32_x.h>
#include <cstdint>
#include <limits>
#include <utility>
#include <mutex>
#include <tuple>
#include <type_traits>
namespace at {
namespace native {
namespace {
// launch bounds used for kernels utilizing TensorIterator
const uint32_t block_size_bound = 256;
const uint32_t grid_size_bound = 4;
// At the time of writing, there is no curand_* call that increments the offset by more than 4.
// See: https://docs.nvidia.com/cuda/archive/11.8.0/curand/group__DEVICE.html
const uint32_t max_generator_offsets_per_curand_call = 4;
// utility function that calculates proper philox_offset
// for distributions utilizing TensorIterator. For distributions using
// TensorIterator, we are using a grid-stride loop with each
// thread yielding one element per thread. For the edge of the grid-stride
// loop, if the tensor size is large, the unroll loop will kick in and the float4
// from curand4 will start getting utilized (for common tensor sizes, we end up
// using rand.x from each thread). The philox_offset calculation was changed to
// (number of elements per thread * maximum generator increment per "curand_*" call), which makes
// sure that philox offset increment is not less than the number of randoms used
// in each thread.
std::tuple<uint64_t, dim3, dim3> calc_execution_policy(const int64_t total_elements, const uint32_t unroll_factor) {
const uint64_t numel = static_cast<uint64_t>(total_elements);
const uint32_t block_size = block_size_bound;
dim3 dim_block(block_size);
dim3 grid((numel + block_size - 1) / block_size);
uint32_t blocks_per_sm = at::cuda::getCurrentDeviceProperties()->maxThreadsPerMultiProcessor / block_size;
grid.x = std::min(
static_cast<uint32_t>(at::cuda::getCurrentDeviceProperties()->multiProcessorCount) * blocks_per_sm,
grid.x);
//number of times random will be generated per thread, to offset philox counter in thc random state
uint64_t counter_offset = ((numel - 1) / (block_size * grid.x * unroll_factor) + 1) * max_generator_offsets_per_curand_call;
return std::make_tuple(counter_offset, grid, dim_block);
}
// grid stride loop kernel for distributions
template<typename accscalar_t, int unroll_factor, typename dist_t, typename transform_t>
C10_LAUNCH_BOUNDS_2(block_size_bound, grid_size_bound)
__global__ void distribution_elementwise_grid_stride_kernel(int numel,
PhiloxCudaState philox_args,
const dist_t dist_func,
const transform_t transform_func) {
auto seeds = at::cuda::philox::unpack(philox_args);
int idx = blockIdx.x * blockDim.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(std::get<0>(seeds),
idx,
std::get<1>(seeds),
&state);
int rounded_size = ((numel - 1)/(blockDim.x * gridDim.x * unroll_factor)+1) *
blockDim.x * gridDim.x * unroll_factor;
for(int linear_index = idx; linear_index < rounded_size; linear_index += blockDim.x * gridDim.x * unroll_factor) {
auto rand = dist_func(&state);
#pragma unroll
for (int ii = 0; ii < unroll_factor; ii++) {
int li = linear_index + blockDim.x * gridDim.x * ii;
if (li < numel) {
transform_func(li, static_cast<accscalar_t>((&rand.x)[ii]));
}
}
__syncthreads();
}
}
/**
* distribution_nullary_kernel is analogous to gpu_kernel in
* ATen/native/cuda/Loops.cuh. Like gpu_kernel, it uses
* TensorIterator to launch a kernel. However, the differences are
* - it launches a grid-stride loop based kernel. The kernel is not
* generic like elementwise_kernel in Loops.cuh and is specialized
* for the distribution kernels here.
* - For big size tensors, we can launch multiple kernels recursively
* (i.e. if (!iter.can_use_32bit_indexing())) and hence, the philox
* offset calculation is done in this function.
*
* FIXME: Can we specialize elementwise_kernel and launch_kernel in Loops.cuh
* to have grid-stride loop kernel and then use that to launch our distribution
* kernels? Note that we need a grid-stride loop kernel because, we found by testing
* that it achieves peak effective bandwidth.
*/
template<typename scalar_t,
typename accscalar_t,
typename dist_func_return_t,
typename RNG,
typename dist_t,
typename transform_t>
void distribution_nullary_kernel(at::TensorIteratorBase& iter,
RNG gen,
const dist_t& dist_func,
const transform_t transform_func) {
const int unroll_factor = sizeof(dist_func_return_t) / sizeof(accscalar_t);
TORCH_CHECK(unroll_factor >= 1, "unroll_factor must be >= 1.");
int64_t numel = iter.numel();
if (numel == 0) {
return;
}
auto execution_policy = calc_execution_policy(numel, unroll_factor);
auto counter_offset = std::get<0>(execution_policy);
auto grid = std::get<1>(execution_policy);
auto block = std::get<2>(execution_policy);
PhiloxCudaState rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_cuda_state(counter_offset);
}
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
distribution_nullary_kernel<scalar_t, accscalar_t, dist_func_return_t>(sub_iter,
gen, dist_func, transform_func);
}
return;
}
char* out_data = (char*)iter.data_ptr(0);
auto stream = at::cuda::getCurrentCUDAStream();
if (iter.is_trivial_1d()) {
auto strides = iter.get_inner_strides();
int stride0 = strides[0];
distribution_elementwise_grid_stride_kernel<accscalar_t, unroll_factor><<<grid, block, 0, stream>>>(
numel,
rng_engine_inputs,
dist_func,
[=]__device__(int idx, accscalar_t rand) {
scalar_t* out = (scalar_t*)&out_data[stride0 * idx];
*out = transform_func(rand);
}
);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
auto offset_calc = make_offset_calculator<1>(iter);
distribution_elementwise_grid_stride_kernel<accscalar_t, unroll_factor><<<grid, block, 0, stream>>>(
numel,
rng_engine_inputs,
dist_func,
[=]__device__(int idx, accscalar_t rand) {
auto offsets = offset_calc.get(idx);
scalar_t* out = (scalar_t*)&out_data[offsets[0]];
*out = transform_func(rand);
}
);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
}
// Binary kernel
template <typename func_t, typename inp_offset_calc_t, typename out_offset_calc_t>
__global__ void distribution_binary_elementwise_kernel(
int numel,
func_t f,
PhiloxCudaState philox_args,
typename function_traits<func_t>::result_type *output_data,
const typename function_traits<func_t>::template arg<1>::type *input_data_1,
const typename function_traits<func_t>::template arg<2>::type *input_data_2,
inp_offset_calc_t inp_calc,
out_offset_calc_t out_calc) {
auto seeds = at::cuda::philox::unpack(philox_args);
using input_t_1 = typename function_traits<func_t>::template arg<1>::type;
using input_t_2 = typename function_traits<func_t>::template arg<2>::type;
input_t_1 inputs_1[thread_work_size()];
input_t_2 inputs_2[thread_work_size()];
int base_index = block_work_size() * blockIdx.x;
int remaining = std::min<int>(numel - base_index, block_work_size());
curandStatePhilox4_32_10_t state;
curand_init(std::get<0>(seeds),
blockIdx.x * blockDim.x + threadIdx.x,
std::get<1>(seeds),
&state);
// load data into registers
int thread_idx = threadIdx.x;
#pragma unroll
for (int i = 0; i < thread_work_size(); i++) {
if (thread_idx >= remaining) {
break;
}
int input_idx = thread_idx + base_index;
auto offsets = inp_calc.get(input_idx);
inputs_1[i] = input_data_1[offsets[0]];
inputs_2[i] = input_data_2[offsets[1]];
thread_idx += num_threads();
}
// compute and store
thread_idx = threadIdx.x;
#pragma unroll
for (int i = 0; i < thread_work_size(); i++) {
if (thread_idx >= remaining) {
break;
}
int input_idx = thread_idx + base_index;
auto offsets = out_calc.get(input_idx);
output_data[offsets[0]] = f(state, inputs_1[i], inputs_2[i]);
thread_idx += num_threads();
}
}
template <typename func_t>
void distribution_binary_kernel(TensorIteratorBase &iter, PhiloxCudaState philox_args, const func_t &f) {
static_assert(std::is_same_v<typename function_traits<func_t>::template arg<0>::type, curandStatePhilox4_32_10_t&>, "the first argument of functor must be curandStatePhilox4_32_10_t");
using input_t_1 = typename function_traits<func_t>::template arg<1>::type;
using input_t_2 = typename function_traits<func_t>::template arg<2>::type;
using output_t = typename function_traits<func_t>::result_type;
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
distribution_binary_kernel(sub_iter, philox_args, f);
}
return;
}
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(iter.can_use_32bit_indexing());
int64_t numel = iter.numel();
if (numel == 0) {
return;
}
output_t *output_data = static_cast<output_t *>(iter.data_ptr(0));
const input_t_1 *input_data_1 = static_cast<const input_t_1 *>(iter.data_ptr(1));
const input_t_2 *input_data_2 = static_cast<const input_t_2 *>(iter.data_ptr(2));
int64_t grid = (numel + block_work_size() - 1) / block_work_size();
auto stream = at::cuda::getCurrentCUDAStream();
if (iter.is_contiguous()) {
distribution_binary_elementwise_kernel<<<grid,num_threads(), 0, stream>>>(
numel, f, philox_args, output_data, input_data_1, input_data_2,
TrivialOffsetCalculator<2>(), TrivialOffsetCalculator<1>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
distribution_binary_elementwise_kernel<<<grid, num_threads(), 0, stream>>>(
numel, f, philox_args, output_data, input_data_1, input_data_2,
make_input_offset_calculator<2>(iter), make_output_offset_calculator(iter));
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
}
} // namespace
}} // namespace at::native
namespace at {
namespace native {
namespace templates {
namespace cuda {
// ==================================================== Random ========================================================
template<typename RNG>
void random_from_to_kernel(TensorIteratorBase& iter, uint64_t range, int64_t base, RNG gen) {
AT_DISPATCH_V2(iter.dtype(), "random_from_to_kernel_cuda", AT_WRAP([&] {
if ((
std::is_same_v<scalar_t, int64_t> ||
std::is_same_v<scalar_t, double> ||
std::is_same_v<scalar_t, float> ||
std::is_same_v<scalar_t, at::BFloat16>) && range >= 1ULL << 32)
{
// define lambda to mod with range and add base
auto random_func = [range, base] __device__ (uint64_t rand) {
return transformation::uniform_int_from_to<scalar_t>(rand, range, base);
};
distribution_nullary_kernel<scalar_t, uint64_t, ulonglong2>(iter,
gen,
[] __device__ (curandStatePhilox4_32_10_t* state) -> ulonglong2 {
ulonglong2 ret;
uint4 rand_val = curand4(state);
ret.x = (static_cast<uint64_t>(rand_val.x) << 32) | rand_val.y;
ret.y = (static_cast<uint64_t>(rand_val.z) << 32) | rand_val.w;
return ret;
},
random_func);
} else {
auto random_func = [range, base] __device__ (uint32_t rand) {
return transformation::uniform_int_from_to<scalar_t>(rand, range, base);
};
distribution_nullary_kernel<scalar_t, uint32_t, uint4>(iter,
gen,
[] __device__ (curandStatePhilox4_32_10_t* state) -> uint4 {
return curand4(state);
},
random_func);
}
}), AT_EXPAND(AT_ALL_TYPES), kBool, kHalf, kBFloat16, AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES));
}
// This is the special kernel to handle single specific case:
// from(inclusive) = std::numeric_limits<int64_t>::lowest()
// to(exclusive) = None (= std::numeric_limits<int64_t>::max() + 1)
template<typename RNG>
void random_full_64_bits_range_kernel(TensorIteratorBase& iter, RNG gen) {
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::BFloat16, iter.dtype(), "random_full_64_bits_range_kernel_cuda", [&] {
if (std::is_same_v<scalar_t, int64_t> ||
std::is_same_v<scalar_t, double> ||
std::is_same_v<scalar_t, float> ||
std::is_same_v<scalar_t, at::BFloat16>) {
auto random_func = [] __device__ (uint64_t rand) {
return transformation::uniform_int_full_range<scalar_t>(rand);
};
distribution_nullary_kernel<scalar_t, uint64_t, ulonglong2>(iter,
gen,
[] __device__ (curandStatePhilox4_32_10_t* state) -> ulonglong2 {
ulonglong2 ret;
uint4 rand_val = curand4(state);
ret.x = (static_cast<uint64_t>(rand_val.x) << 32) | rand_val.y;
ret.y = (static_cast<uint64_t>(rand_val.z) << 32) | rand_val.w;
return ret;
},
random_func);
} else {
TORCH_CHECK(false, "random_full_64_bits_range_kernel_cuda handles only int64, double, float and bfloat16");
}
});
}
template<typename RNG>
struct RandomFromToKernel {
void operator()(TensorIteratorBase& iter, uint64_t range, int64_t base, std::optional<Generator> gen) {
random_from_to_kernel(iter, range, base, check_generator<RNG>(gen));
}
void operator()(TensorIteratorBase& iter, std::optional<Generator> gen) {
random_full_64_bits_range_kernel(iter, check_generator<RNG>(gen));
}
};
template<typename RNG>
void random_kernel(TensorIteratorBase& iter, RNG gen) {
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, iter.dtype(), "random_kernel_cuda", [&] {
if (std::is_same_v<scalar_t, double> || std::is_same_v<scalar_t, int64_t>) {
auto random_func = [] __device__ (uint64_t rand) {
return transformation::uniform_int<scalar_t>(rand);
};
distribution_nullary_kernel<scalar_t, uint64_t, ulonglong2>(iter, gen,
[] __device__ (curandStatePhilox4_32_10_t* state) -> ulonglong2 {
ulonglong2 ret;
uint4 rand_val = curand4(state);
ret.x = (static_cast<uint64_t>(rand_val.x) << 32) | rand_val.y;
ret.y = (static_cast<uint64_t>(rand_val.z) << 32) | rand_val.w;
return ret;
},
random_func);
} else {
auto random_func = [] __device__ (uint32_t rand) {
return transformation::uniform_int<scalar_t>(rand);
};
distribution_nullary_kernel<scalar_t, uint32_t, uint4>(iter,
gen,
[] __device__ (curandStatePhilox4_32_10_t* state) -> uint4 {
return curand4(state);
},
random_func);
}
});
}
template<typename RNG>
struct RandomKernel {
void operator()(TensorIteratorBase& iter, RNG gen) {
random_kernel(iter, gen);
}
};
// ====================================================================================================================
template<typename scalar_t, typename accscalar_t, typename RNG, typename transform_t>
void uniform_and_transform(TensorIteratorBase& iter, RNG gen, transform_t transform) {
if (std::is_same_v<scalar_t, double>) {
distribution_nullary_kernel<scalar_t, accscalar_t, double2>(iter,
gen,
[] __device__ (curandStatePhilox4_32_10_t* state) -> double2 { return curand_uniform2_double(state); },
transform);
} else {
distribution_nullary_kernel<scalar_t, accscalar_t, float4>(iter,
gen,
[] __device__ (curandStatePhilox4_32_10_t* state) -> float4 { return curand_uniform4(state); },
transform);
}
}
template<typename scalar_t, typename accscalar_t, typename RNG, typename transform_t>
void normal_and_transform(TensorIteratorBase& iter, RNG gen, transform_t transform) {
if (std::is_same_v<scalar_t, double>) {
distribution_nullary_kernel<scalar_t, accscalar_t, double2>(iter,
gen,
[] __device__ (curandStatePhilox4_32_10_t* state) -> double2 { return curand_normal2_double(state); },
transform);
} else {
distribution_nullary_kernel<scalar_t, accscalar_t, float4>(iter,
gen,
[] __device__ (curandStatePhilox4_32_10_t* state) -> float4 { return curand_normal4(state); },
transform);
}
}
// ==================================================== Normal ========================================================
template<typename RNG>
void normal_kernel(const TensorBase &self, double mean_, double std_, RNG gen) {
auto iter = TensorIterator::borrowing_nullary_op(self);
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "normal_kernel_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
auto mean = static_cast<accscalar_t>(mean_);
auto std = static_cast<accscalar_t>(std_);
// define lambda to multiply std and add mean
auto normal_func = [mean, std] __device__ (accscalar_t rand) {
return static_cast<scalar_t>(transformation::normal<accscalar_t>(rand, mean, std));
};
normal_and_transform<scalar_t, accscalar_t>(iter, gen, normal_func);
});
}
template<typename RNG>
struct NormalKernel {
void operator()(const TensorBase &self, double mean, double std, std::optional<Generator> gen) {
normal_kernel(self, mean, std, check_generator<RNG>(gen));
}
};
// ==================================================== Uniform ========================================================
template<typename RNG>
void uniform_kernel(TensorIteratorBase& iter, double from_, double to_, RNG gen) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "uniform_kernel_cuda", [&] {
auto from = static_cast<scalar_t>(from_);
auto to = static_cast<scalar_t>(to_);
using opmath_t = at::opmath_type<scalar_t>;
auto range = static_cast<opmath_t>(to-from);
// define lambda to reverse bounds, multiply 'range' and add 'from_'
auto uniform_func = [range, from, to] __device__ (opmath_t rand) {
// Compute output value before reversing the bounds
// BEFORE TOUCHING THIS CODE READ: https://github.com/pytorch/pytorch/issues/96947
auto value = static_cast<scalar_t>(rand * range + from);
// reverse the bounds of curand4 from (0, 1] to [0, 1)
// Note that this method is from legacy THCTensorRandom and is likely to give
// you more 0-s, since, the probability of gettings 1-s is higher than 0-s and
// by reversing the bounds, we are flipping the probabilities of 1-s and 0-s.
// BEFORE TOUCHING THIS CODE READ: https://github.com/pytorch/pytorch/issues/16706
auto reverse_bound_value = value == to ? from : value;
return reverse_bound_value;
};
uniform_and_transform<scalar_t, opmath_t>(iter, gen, uniform_func);
});
}
template<typename RNG>
struct UniformKernel {
void operator()(TensorIteratorBase& iter, double from, double to, std::optional<Generator> gen) {
uniform_kernel(iter, from, to, check_generator<RNG>(gen));
}
};
// ================================================== LogNormal =======================================================
template<typename RNG>
void log_normal_kernel(TensorIteratorBase& iter, double mean_, double std_, RNG gen) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "log_normal_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
auto mean = static_cast<accscalar_t>(mean_);
auto std = static_cast<accscalar_t>(std_);
// define lambda for log_normal transformation
auto log_normal_func = [mean, std] __device__ (accscalar_t rand) {
return static_cast<scalar_t>(transformation::log_normal<accscalar_t>(transformation::normal<accscalar_t>(rand, mean, std)));
};
normal_and_transform<scalar_t, accscalar_t>(iter, gen, log_normal_func);
});
}
template<typename RNG>
struct LogNormalKernel {
void operator()(TensorIteratorBase& iter, double mean, double std, std::optional<Generator> gen) {
log_normal_kernel(iter, mean, std, check_generator<RNG>(gen));
}
};
// =================================================== Geometric ======================================================
template<typename RNG>
void geometric_kernel(TensorIteratorBase& iter, double p, RNG gen) {
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "geometric_cuda", [&] {
using accscalar_t = at::DiscreteDistributionType<scalar_t>::type;
// define lambda for geometric transformation
auto geometric_func = [p] __device__ (accscalar_t rand) {
return static_cast<scalar_t>(transformation::geometric<accscalar_t>(rand, p));
};
uniform_and_transform<scalar_t, accscalar_t>(iter, gen, geometric_func);
});
}
template<typename RNG>
struct GeometricKernel {
void operator()(TensorIteratorBase& iter, double p, std::optional<Generator> gen) {
geometric_kernel(iter, p, check_generator<RNG>(gen));
}
};
// ================================================== Exponential =====================================================
template<typename RNG>
void exponential_kernel(TensorIteratorBase& iter, double lambda_, RNG gen) {
TORCH_CHECK(isFloatingType(iter.dtype()), "Exponential distribution is a continuous probability distribution. dtype must be a floating point but you specified ", iter.dtype());
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "exponential_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
auto lambda = static_cast<accscalar_t>(lambda_);
// define lambda for exponential transformation
auto exponential_func = [lambda] __device__ (accscalar_t rand) {
return static_cast<scalar_t>(transformation::exponential<accscalar_t>(rand, lambda));
};
uniform_and_transform<scalar_t, accscalar_t>(iter, gen, exponential_func);
});
}
template<typename RNG>
struct ExponentialKernel {
void operator()(TensorIteratorBase& iter, double lambda, std::optional<Generator> gen) {
exponential_kernel(iter, lambda, check_generator<RNG>(gen));
}
};
// ==================================================== Cauchy ========================================================
template<typename RNG>
void cauchy_kernel(TensorIteratorBase& iter, double median_, double sigma_, RNG gen) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "cauchy_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
auto median = static_cast<accscalar_t>(median_);
auto sigma = static_cast<accscalar_t>(sigma_);
// define lambda for cauchy transformation
auto cauchy_func = [median, sigma] __device__ (accscalar_t rand) {
return static_cast<scalar_t>(transformation::cauchy<accscalar_t>(rand, median, sigma));
};
uniform_and_transform<scalar_t, accscalar_t>(iter, gen, cauchy_func);
});
}
template<typename RNG>
struct CauchyKernel {
void operator()(TensorIteratorBase& iter, double median, double sigma, std::optional<Generator> gen) {
cauchy_kernel(iter, median, sigma, check_generator<RNG>(gen));
}
};
// ==================================================== Bernoulli =====================================================
template<typename scalar_t, typename prob_t>
void bernoulli_tensor_cuda_kernel(
const TensorBase &ret, const at::TensorBase &p,
PhiloxCudaState philox_args) {
auto functor = [philox_args] __device__(
int n, scalar_t& v1, scalar_t& v2, scalar_t& v3, scalar_t& v4,
const prob_t& p1, const prob_t& p2, const prob_t& p3, const prob_t& p4) {
auto seeds = at::cuda::philox::unpack(philox_args);
curandStatePhilox4_32_10_t state;
curand_init(std::get<0>(seeds),
blockIdx.x * blockDim.x + threadIdx.x,
std::get<1>(seeds),
&state);
// See Note [Register spilling in curand call for CUDA < 10]
float4 rand = curand_uniform4(&state);
switch (n) {
case 4: {
CUDA_KERNEL_ASSERT(0 <= p4 && p4 <= 1);
v4 = static_cast<scalar_t>(rand.w <= p4);
[[fallthrough]];
}
case 3: {
CUDA_KERNEL_ASSERT(0 <= p3 && p3 <= 1);
v3 = static_cast<scalar_t>(rand.z <= p3);
[[fallthrough]];
}
case 2: {
CUDA_KERNEL_ASSERT(0 <= p2 && p2 <= 1);
v2 = static_cast<scalar_t>(rand.y <= p2);
[[fallthrough]];
}
case 1: {
CUDA_KERNEL_ASSERT(0 <= p1 && p1 <= 1);
v1 = static_cast<scalar_t>(rand.x <= p1);
}
}
};
// The template argument `4` below indicates that we want to operate on four
// element at each time. See NOTE [ CUDA_tensor_applyN helpers ] for details.
at::cuda::CUDA_tensor_apply2<scalar_t, const prob_t, 4, decltype(functor),
/*max_threads_per_block=*/512,
/*min_blocks_per_sm==*/2>(ret, p, functor);
}
template<typename RNG>
void bernoulli_kernel(const TensorBase &self, const TensorBase &p_, RNG gen) {
PhiloxCudaState rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_cuda_state(10);
}
TORCH_CHECK(at::isFloatingType(p_.scalar_type()), "expected probabilities tensor to have floating type, got ", p_.scalar_type());
// cast probabilities tensor to double for double `self` tensor, and to `float` for everything else
const auto p_type = self.dtype() == at::kDouble ? at::kDouble : at::kFloat;
auto p_cuda = p_.to(TensorOptions().device(self.device()).dtype(p_type));
auto p = expand_inplace(self, p_cuda);
AT_DISPATCH_ALL_TYPES_AND3(
at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, self.scalar_type(), "bernoulli_tensor_cuda_self_", [&] {
if (std::is_same_v<scalar_t, double>) {
return bernoulli_tensor_cuda_kernel<double, double>(self, *p, rng_engine_inputs);
} else {
return bernoulli_tensor_cuda_kernel<scalar_t, float>(self, *p, rng_engine_inputs);
}
});
}
template<typename RNG>
void bernoulli_kernel(TensorIteratorBase& iter, double p, RNG gen) {
AT_DISPATCH_ALL_TYPES_AND3(
at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, iter.dtype(), "bernoulli_scalar_cuda_", [&] {
using accscalar_t = at::DiscreteDistributionType<scalar_t>::type;
// define lambda for bernoulli transformation
auto bernoulli_func = [p] __device__ (accscalar_t rand) {
return static_cast<scalar_t>(transformation::bernoulli<accscalar_t>(rand, p));
};
uniform_and_transform<scalar_t, accscalar_t>(iter, gen, bernoulli_func);
});
}
template<typename RNG>
struct BernoulliKernel {
void operator()(TensorIteratorBase& iter, double p, std::optional<Generator> gen) {
bernoulli_kernel(iter, p, check_generator<RNG>(gen));
}
void operator()(const TensorBase &self, const TensorBase &p_, std::optional<Generator> gen) {
bernoulli_kernel(self, p_, check_generator<RNG>(gen));
}
};
}}}}