-
Notifications
You must be signed in to change notification settings - Fork 24
/
conv.py
568 lines (476 loc) · 22.2 KB
/
conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# -*- coding: utf-8 -*-
"""
.. invisible:
_ _ _____ _ _____ _____
| | | | ___| | | ___/ ___|
| | | | |__ | | | |__ \ `--.
| | | | __|| | | __| `--. \
\ \_/ / |___| |___| |___/\__/ /
\___/\____/\_____|____/\____/
Created on Aug 27, 2013
Simple convolutional layer (:class:`Conv`) and conv layer with subsequent \
activations (:class:`ConvRELU`, :class:`ConvStrictRELU`, :class:`ConvTanh`)
███████████████████████████████████████████████████████████████████████████████
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
███████████████████████████████████████████████████████████████████████████████
"""
from __future__ import division
import cuda4py.blas as cublas
import math
from math import pi
import numpy
import time
from zope.interface import implementer
from veles.accelerated_units import IOpenCLUnit, ICUDAUnit, INumpyUnit
from veles.compat import from_none
import veles.error as error
from veles.memory import reshape_transposed
from veles.units import Unit
import veles.ocl_blas as ocl_blas
import veles.znicz.nn_units as nn_units
class ConvolutionalBase(Unit):
hide_from_registry = True
CONV_ATTRS = ("n_kernels", "kx", "ky", "sliding", "padding", "unpack_size")
def __init__(self, workflow, **kwargs):
super(ConvolutionalBase, self).__init__(workflow, **kwargs)
self.demand(*self.CONV_ATTRS)
def link_conv_attrs(self, other):
self.link_attrs(other, *self.CONV_ATTRS)
return self
@implementer(IOpenCLUnit, ICUDAUnit, INumpyUnit)
class Conv(ConvolutionalBase, nn_units.NNLayerBase):
"""Convolutional forward propagation with linear activation f(x) = x.
Must be assigned before initialize():
input
Updates after run():
output
Creates within initialize():
weights
bias
output
Attributes:
input: input as batch of multichannel interleaved images.
output: output as batch of multichannel interleaved images.
weights: matrix of weights.
bias: bias.
n_kernels: number of convolutional kernels.
kx: kernel width.
ky: kernel height.
padding: tuple of virtual sample padding (left, top, right, bottom).
sliding: tuple of kernel sliding (by x-axis, by y-axis).
weights_filling: what weight filling to use: `"uniform"` for uniform
random distribution, `"normal"` for normal distribution,
`"gabor"` for using Gabor kernels.
weights_stddev: standard deviation of normal or Gabor weight fillings
rand: rnd.Rand() object for initial weights generation.
activation_mode: activation define for OpenCL source.
weights_transposed: assume weights matrix as a transposed one.
NOTE: only access order will be affected,
not a shape.
"""
MAPPING = {"conv"}
def __init__(self, workflow, **kwargs):
super(Conv, self).__init__(workflow, **kwargs)
try:
self.n_kernels = kwargs["n_kernels"]
self.kx = kwargs["kx"]
self.ky = kwargs["ky"]
except KeyError:
raise from_none(KeyError(
"n_kernels, kx and ky are required parameters"))
self.padding = tuple(
kwargs.get("padding", (0, 0, 0, 0))) # Left Top Right Bottom
self.sliding = tuple(kwargs.get("sliding", (1, 1))) # X Y
self.activation_mode = "ACTIVATION_LINEAR"
self.exports.extend(("activation_mode", "kx", "ky", "n_kernels",
"padding", "sliding"))
self._global_size = None
self._local_size = None
# Image count to unpack at once
self.unpack_size = kwargs.get("unpack_size", 16)
def init_unpickled(self):
super(Conv, self).init_unpickled()
self.sources_["conv/forward"] = {}
def get_weights_magnitude(self):
"""
Returns: weights magnitude for initial random distribution,
such that activation function will be near maximum
if all input values are at their supposed max value.
"""
n_channels = (self.input.size // (self.input.shape[0] *
self.input.shape[1] * self.input.shape[2]))
vle = (1.0 / self.input.max_supposed /
numpy.sqrt(self.kx * self.ky * n_channels))
if self.weights_filling == "gaussian":
vle /= 3
return vle
def initialize(self, device, **kwargs):
super(Conv, self).initialize(device, **kwargs)
if self.weights_stddev is None:
self.weights_stddev = min(self.get_weights_magnitude(), 0.05)
if self.bias_stddev is None:
self.bias_stddev = self.weights_stddev
self._batch_size = self.input.shape[0]
self._sy = self.input.shape[1]
self._sx = self.input.shape[2]
self._n_channels = (self.input.size //
(self._batch_size * self._sx * self._sy))
self._kx_app = (
1 + ((self._sx - self.kx +
self.padding[0] + self.padding[2]) // self.sliding[0]))
self._ky_app = (
1 + ((self._sy - self.ky +
self.padding[1] + self.padding[3]) // self.sliding[1]))
self._kernel_app_per_image = self._kx_app * self._ky_app
self._kernel_size = self.kx * self.ky * self._n_channels
self._fill_weights()
self._fill_biases()
output_shape = (self._batch_size, self._ky_app, self._kx_app,
self.n_kernels)
if self.output:
assert self.output.shape[1:] == output_shape[1:]
if not self.output or output_shape[0] != self.output.shape[0]:
self.output.reset(numpy.zeros(output_shape, self.input.dtype))
assert self._kernel_app_per_image * self.n_kernels == \
self.output.sample_size
self.init_vectors(self.input, self.output, self.weights, self.bias)
def _gpu_init(self, blas_class):
dtype = self.input.dtype
defines = {
self.activation_mode: 1,
"WEIGHTS_TRANSPOSED": int(self.weights_transposed),
"INCLUDE_BIAS": int(self.include_bias),
"BATCH": self._batch_size,
"SX": self._sx,
"SY": self._sy,
"N_CHANNELS": self._n_channels,
"KX": self.kx,
"KY": self.ky,
"N_KERNELS": self.n_kernels,
"PAD_LEFT": self.padding[0],
"PAD_TOP": self.padding[1],
"PAD_RIGHT": self.padding[2],
"PAD_BOTTOM": self.padding[3],
"SLIDE_X": self.sliding[0],
"SLIDE_Y": self.sliding[1],
"OUTPUT_SIZE": self.output.size,
"BIAS_SIZE": self.n_kernels
}
self.build_program(
defines, "%s_%d_%dx%dx%d_%dx%d_%d" % (
self.__class__.__name__, self._batch_size,
self._sx, self._sy, self._n_channels,
self.kx, self.ky, self.n_kernels), dtype=dtype)
self.gemm_ = blas_class.gemm(dtype)
self.np_one = numpy.ones(1, dtype=dtype)
self.np_zero = numpy.zeros(1, dtype=dtype)
self._const_i = numpy.zeros(1, dtype=numpy.int64)
self.assign_kernel("Unpack1D")
unpack_bytes = (self._kernel_app_per_image * self.unpack_size *
self._kernel_size * self.input.itemsize)
self.device.request_temp_buffer(unpack_bytes)
if self.include_bias or self.activation_mode != "ACTIVATION_LINEAR":
self._krn_bias_ = self.get_kernel("apply_bias_with_activation")
self._krn_bias_.set_args(self.output.devmem, self.bias.devmem)
else:
self._krn_bias_ = None
def ocl_init(self):
ocl_blas.OCLBLAS.attach_to_device(self.device)
self._gpu_init(ocl_blas.OCLBLAS)
self._global_size_unpack = lambda size: (size,)
self._local_size_unpack = None
if self._krn_bias_ is not None:
self._global_size_bias = (self.output.size,)
self._local_size_bias = None
self._process_subblock = self._ocl_process_subblock
self.set_arg(0, self.input)
def cuda_init(self):
self._gpu_init(cublas.CUBLAS)
block_size = self.device.suggest_block_size(self._kernel_)
self._global_size_unpack = (
lambda size: (int(numpy.ceil(size / block_size)), 1, 1))
self._local_size_unpack = (block_size, 1, 1)
if self._krn_bias_ is not None:
block_size = self.device.suggest_block_size(self._krn_bias_)
self._global_size_bias = (
int(numpy.ceil(self.output.size / block_size)), 1, 1)
self._local_size_bias = (block_size, 1, 1)
self._process_subblock = self._cuda_process_subblock
def ocl_run(self):
self.gpu_run()
def cuda_run(self):
self.gpu_run()
def gpu_run(self):
self.unmap_vectors(self.input, self.weights, self.bias, self.output)
unpack_data = self.device.get_temp_buffer()
for i in range(0, self._batch_size, self.unpack_size):
self._process_subblock(
i, min(self._batch_size - i, self.unpack_size), unpack_data)
if self.include_bias or self.activation_mode != "ACTIVATION_LINEAR":
self.execute_kernel(self._global_size_bias, self._local_size_bias,
self._krn_bias_)
def _cuda_process_subblock(self, start_image, image_count, unpack_data):
self._kernel_.set_arg(
0, int(self.input.devmem) +
start_image * self.input.sample_size * self.input.itemsize)
self._kernel_.set_arg(1, unpack_data)
unpack_side = self._kernel_app_per_image * image_count
limit = unpack_side * self._kernel_size
if self._const_i is not None:
self._const_i[0] = limit
self._kernel_.set_arg(2, self._const_i)
self.execute_kernel(self._global_size_unpack(limit),
self._local_size_unpack)
output_offs = (start_image * self.output.sample_size *
self.output.itemsize)
self.gemm_(
self.device.blas, cublas.CUBLAS_OP_N if self.weights_transposed
else cublas.CUBLAS_OP_T, cublas.CUBLAS_OP_N,
self.weights_shape[0], unpack_side, self._kernel_size,
self.np_one, self.weights.devmem, unpack_data,
self.np_zero, int(self.output.devmem) + output_offs)
def _ocl_process_subblock(self, start_image, image_count, unpack_data):
self._const_i[0] = start_image * self.input.sample_size
self._kernel_.set_arg(1, unpack_data)
self._kernel_.set_arg(2, self._const_i)
unpack_side = self._kernel_app_per_image * image_count
limit = unpack_side * self._kernel_size
self.execute_kernel(self._global_size_unpack(limit),
self._local_size_unpack)
output_offs = start_image * self.output.sample_size
self.gemm_(
self.device.blas, cublas.CUBLAS_OP_N if self.weights_transposed
else cublas.CUBLAS_OP_T, cublas.CUBLAS_OP_N,
self.weights_shape[0], unpack_side, self._kernel_size,
self.np_one, self.weights.devmem, unpack_data,
self.np_zero, self.output.devmem, offsetC=output_offs)
def numpy_run(self):
"""Forward propagation from batch on CPU only.
"""
self.input.map_read()
self.weights.map_read()
self.bias.map_read()
self.output.map_invalidate()
sx_full = self.padding[0] + self._sx + self.padding[2]
sy_full = self.padding[1] + self._sy + self.padding[3]
nx = (sx_full - self.kx) // self.sliding[0] + 1
ny = (sy_full - self.ky) // self.sliding[1] + 1
weights = (reshape_transposed(self.weights.mem)
if self.weights_transposed else self.weights.mem)
assert self.kx >= 0 and self.ky >= 0
for batch, _ in ((batch, ch)
for batch in range(self._batch_size)
for ch in range(self._n_channels)):
for k, kernel in enumerate(weights):
for i, j in ((i, j) for i in range(ny) for j in range(nx)):
full_i1 = i * self.sliding[1]
full_i2 = full_i1 + self.ky
full_j1 = j * self.sliding[0]
full_j2 = full_j1 + self.kx
in_i1 = min(max(full_i1 - self.padding[1], 0), self._sy)
in_i2 = min(max(full_i2 - self.padding[1], 0), self._sy)
in_j1 = min(max(full_j1 - self.padding[0], 0), self._sx)
in_j2 = min(max(full_j2 - self.padding[0], 0), self._sx)
cut_i1, cut_i2 = (in_i1 - full_i1 + self.padding[1],
in_i2 - full_i1 + self.padding[1])
cut_j1, cut_j2 = (in_j1 - full_j1 + self.padding[0],
in_j2 - full_j1 + self.padding[0])
if in_i2 - in_i1 > 0 or in_j2 - in_j1 > 0:
cut = self.input.mem[batch, in_i1:in_i2, in_j1:in_j2]
kernel_3d = kernel.reshape(self.ky, self.kx,
self._n_channels)
cutted_kernel = kernel_3d[cut_i1:cut_i2,
cut_j1:cut_j2, :]
assert cut.size == cutted_kernel.size
conv = numpy.sum(numpy.multiply(cut.ravel(),
cutted_kernel.ravel()))
self.output.mem[batch, i, j, k] = conv
# add bias and apply activation function
self.apply_activation()
def run(self):
t1 = time.time()
retval = super(Conv, self).run()
if retval:
return retval
self.print_debug_data(t1)
def apply_activation(self):
"""Add bias and apply linear activation function.
"""
assert self.activation_mode == "ACTIVATION_LINEAR"
if self.include_bias:
self.output.mem += self.bias.mem
def _fill_array(self, filling_type, mem, stddev):
if filling_type == "uniform":
self.rand.fill(mem, -stddev, stddev)
elif filling_type == "gaussian":
self.rand.fill_normal_real(mem, 0, stddev)
elif filling_type == "constant":
mem[:] = stddev
elif filling_type == "gabor":
self._fill_with_gabor_filters(
self.n_kernels, (self.ky, self.kx), stddev)
else:
raise error.BadFormatError(
"Invalid filling type: %s" % filling_type)
def _fill_weights(self):
"""
Fills initial filter weights according to `weights_filling` attribute.
Called within ``initialize`` method.
"""
self.weights_shape = (self.n_kernels,
self.kx * self.ky * self._n_channels)
weights_shape_t = tuple(reversed(self.weights_shape))
if not self.weights:
self.weights.reset(numpy.zeros(self.weights_shape,
dtype=self.input.dtype))
self._fill_array(self.weights_filling, self.weights.mem,
self.weights_stddev)
if self.weights_transposed:
a = self.weights.mem.transpose().copy()
self.weights.plain[:] = a.ravel()[:]
self.weights.shape = weights_shape_t
else:
assert (self.weights.shape == weights_shape_t
if self.weights_transposed else self.weights_shape)
def _fill_biases(self):
"""
Fills filter biases according to `bias_filling` attribute.
Called within ``initialize`` method.
"""
if not self.include_bias:
return
if not self.bias:
self.bias.reset(numpy.zeros(self.n_kernels, self.input.dtype))
self._fill_array(self.bias_filling, self.bias.mem,
self.bias_stddev)
else:
assert self.bias.size == self.n_kernels
def _fill_with_gabor_filters(self, n_filters, shape, stddev):
"""
Fills weights and biases with Gabor filters. Only 96 filters
are implemented now, others are filled with white noise.
Args:
n_filters(int): number of filters
shape(tuple): shape of each filter
stddev(float): standard deviation of filtering kernels
"""
import cv2
def normalize_image(a):
a -= a.min()
mx = a.max()
if mx:
a *= 255.0 / mx
# Gabor filters
orientations = [0, pi / 4, pi / 2, 3 * pi / 4] # tilt of filters
phase_shifts = [0, pi] # pi phase shift inverts signal
size = min(shape)
kernels_count = 0
n_chans = self.weights.mem.size // (self.kx * self.ky * self.n_kernels)
for wavelen_ratio in range(4): # how much waves should lay in kernel
for dev_ratio in range(1, 2 * wavelen_ratio + 1):
for ori in orientations:
for phase in phase_shifts:
kernel_chan = cv2.getGaborKernel(
ksize=shape, sigma=size / dev_ratio / 2,
theta=ori, lambd=size / wavelen_ratio,
gamma=1, psi=phase)
kernel_chan = normalize_image(kernel_chan) * stddev
kernel = numpy.zeros(shape=[n_chans, self.kx, self.ky],
dtype=numpy.float64)
for chan in range(n_chans):
kernel[chan, :] = kernel_chan
kernel = kernel.swapaxes(0, 2)
self.weights.mem[
kernels_count * kernel.size:
(kernels_count + 1) * kernel.size] = kernel.ravel()
kernels_count += 1
if kernels_count == n_filters:
return
# White noise (if more, than 96 filters are required)
self.rand.fill_normal_real(self.weights.mem[kernels_count:], 0, stddev)
class ConvTanh(Conv):
"""Conv with scaled tanh() activation \
:math:`f(x) = 1.7159 \\tanh(0.6666 x)`.
"""
MAPPING = {"conv_tanh"}
def initialize(self, device, **kwargs):
self.activation_mode = "ACTIVATION_TANH"
super(ConvTanh, self).initialize(device=device, **kwargs)
self.output.max_supposed = 1.7159
def apply_activation(self):
"""Add bias and apply tanh activation function.
"""
assert self.activation_mode == "ACTIVATION_TANH"
for k in range(self.n_kernels):
for x in numpy.nditer(self.output.mem[:, :, :, k],
op_flags=['readwrite']):
x[...] = math.tanh((x + self.bias.mem[k]) * 0.6666) * 1.7159
class ConvSigmoid(Conv):
"""Conv with Sigmoid activation \
:math:`f(x) = 1.0 / (1.0 + exp(x))`.
"""
MAPPING = {"conv_sigmoid"}
def initialize(self, device, **kwargs):
self.activation_mode = "ACTIVATION_SIGMOID"
super(ConvSigmoid, self).initialize(device=device, **kwargs)
self.output.max_supposed = 1.0
def apply_activation(self):
"""Add bias and apply sigmoid activation function.
"""
assert self.activation_mode == "ACTIVATION_SIGMOID"
for k in range(self.n_kernels):
for x in numpy.nditer(self.output.mem[:, :, :, k],
op_flags=['readwrite']):
x[...] = 1.0 / (1.0 + math.exp(-(x + self.bias.mem[k])))
class ConvRELU(Conv):
"""Conv with smooth RELU activation :math:`f(x) = \\log(1 + \\exp(x))`.
"""
MAPPING = {"conv_relu"}
def initialize(self, device, **kwargs):
self.activation_mode = "ACTIVATION_RELU"
super(ConvRELU, self).initialize(device=device, **kwargs)
self.output.max_supposed = 10
def apply_activation(self):
"""Add bias and apply RELU activation function.
"""
assert self.activation_mode == "ACTIVATION_RELU"
for k in range(self.n_kernels):
for x in numpy.nditer(self.output.mem[:, :, :, k],
op_flags=['readwrite']):
tmp_val = x + self.bias.mem[k]
if tmp_val > 15:
x[...] = tmp_val
else:
x[...] = math.log(math.exp(tmp_val) + 1)
class ConvStrictRELU(Conv):
"""
Conv with strict RELU activation :math:`f(x) = \\max(x, 0)`
(Just like in CAFFE)
"""
MAPPING = {"conv_str"}
def initialize(self, device, **kwargs):
self.activation_mode = "ACTIVATION_STRICT_RELU"
super(ConvStrictRELU, self).initialize(device=device, **kwargs)
self.output.max_supposed = 10
def apply_activation(self):
"""Add bias and apply STRICT_RELU activation function.
"""
assert self.activation_mode == "ACTIVATION_STRICT_RELU"
for k in range(self.n_kernels):
for x in numpy.nditer(self.output.mem[:, :, :, k],
op_flags=['readwrite']):
tmp_val = x + self.bias.mem[k]
x[...] = numpy.where(numpy.greater(tmp_val, 0), tmp_val, 0)