-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgan_baseline.py
226 lines (192 loc) · 8.57 KB
/
gan_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch, torch.optim as optim, torch.nn as nn, torch.nn.functional as F
import torch_mimicry as mmc, argparse, os, sys, imgutils, re
from torch_mimicry.nets import sngan
from options import get_options
from torch import autograd
from torch_mimicry.nets.wgan_gp import wgan_gp_base
from torch_mimicry.nets.wgan_gp.wgan_gp_resblocks import DBlockOptimized, DBlock, GBlock
class WGANGPGenerator32(wgan_gp_base.WGANGPBaseGenerator):
r"""
ResNet backbone generator for WGAN-GP.
Attributes:
nz (int): Noise dimension for upsampling.
ngf (int): Variable controlling generator feature map sizes.
bottom_width (int): Starting width for upsampling generator output to an image.
loss_type (str): Name of loss to use for GAN loss.
"""
def __init__(self, nz=128, ngf=1024, bottom_width=4, outchannels=4, **kwargs):
super().__init__(nz=nz, ngf=ngf, bottom_width=bottom_width, **kwargs)
print('Building WGANGP generator with cout = %d' % outchannels)
# Build the layers
self.l1 = nn.Linear(self.nz, (self.bottom_width**2) * self.ngf)
self.block2 = GBlock(self.ngf, self.ngf >> 1, upsample=True)
self.block3 = GBlock(self.ngf >> 1, self.ngf >> 2, upsample=True)
self.block4 = GBlock(self.ngf >> 2, self.ngf >> 3, upsample=True)
#self.block5 = GBlock(self.ngf >> 3, self.ngf >> 4, upsample=True)
self.b6 = nn.BatchNorm2d(self.ngf >> 3)
self.c6 = nn.Conv2d(self.ngf >> 3, outchannels, 3, 1, padding=1)
self.activation = nn.ReLU(True)
# Initialise the weights
nn.init.xavier_uniform_(self.l1.weight.data, 1.0)
def forward(self, x):
r"""
Feedforwards a batch of noise vectors into a batch of fake images.
Args:
x (Tensor): A batch of noise vectors of shape (N, nz).
Returns:
Tensor: A batch of fake images of shape (N, C, H, W).
"""
#print('rr', x.shape)
h = self.l1(x)
h = h.view(x.shape[0], -1, self.bottom_width, self.bottom_width)
h = self.block2(h)
h = self.block3(h)
h = self.block4(h)
#h = self.block5(h)
h = self.b6(h)
h = self.activation(h)
h = torch.tanh(self.c6(h))
#print('hh', h.shape)
return h
class WGANGPGenerator64(wgan_gp_base.WGANGPBaseGenerator):
r"""
ResNet backbone generator for WGAN-GP.
Attributes:
nz (int): Noise dimension for upsampling.
ngf (int): Variable controlling generator feature map sizes.
bottom_width (int): Starting width for upsampling generator output to an image.
loss_type (str): Name of loss to use for GAN loss.
"""
def __init__(self, nz=128, ngf=1024, bottom_width=4, outchannels=4, **kwargs):
super().__init__(nz=nz, ngf=ngf, bottom_width=bottom_width, **kwargs)
print('Building WGANGP generator with cout = %d' % outchannels)
# Build the layers
self.l1 = nn.Linear(self.nz, (self.bottom_width**2) * self.ngf)
self.block2 = GBlock(self.ngf, self.ngf >> 1, upsample=True)
self.block3 = GBlock(self.ngf >> 1, self.ngf >> 2, upsample=True)
self.block4 = GBlock(self.ngf >> 2, self.ngf >> 3, upsample=True)
self.block5 = GBlock(self.ngf >> 3, self.ngf >> 4, upsample=True)
self.b6 = nn.BatchNorm2d(self.ngf >> 4)
self.c6 = nn.Conv2d(self.ngf >> 4, outchannels, 3, 1, padding=1)
self.activation = nn.ReLU(True)
# Initialise the weights
nn.init.xavier_uniform_(self.l1.weight.data, 1.0)
def forward(self, x):
r"""
Feedforwards a batch of noise vectors into a batch of fake images.
Args:
x (Tensor): A batch of noise vectors of shape (N, nz).
Returns:
Tensor: A batch of fake images of shape (N, C, H, W).
"""
#print('rr', x.shape)
h = self.l1(x)
h = h.view(x.shape[0], -1, self.bottom_width, self.bottom_width)
h = self.block2(h)
h = self.block3(h)
h = self.block4(h)
h = self.block5(h)
h = self.b6(h)
h = self.activation(h)
h = torch.tanh(self.c6(h))
#print('hh', h.shape)
return h
class WGANGPDiscriminator64(wgan_gp_base.WGANGPBaseDiscriminator):
r"""
ResNet backbone discriminator for WGAN-GP.
Attributes:
ndf (int): Variable controlling discriminator feature map sizes.
loss_type (str): Name of loss to use for GAN loss.
gp_scale (float): Lamda parameter for gradient penalty.
"""
def __init__(self, ndf=1024, inchannels=4, **kwargs):
super().__init__(ndf=ndf, **kwargs)
print('Building WGANGP critic with Cin = %d' % inchannels)
# Build layers
self.block1 = DBlockOptimized(inchannels, self.ndf >> 4)
self.block2 = DBlock(self.ndf >> 4, self.ndf >> 3, downsample=True)
self.block3 = DBlock(self.ndf >> 3, self.ndf >> 2, downsample=True)
self.block4 = DBlock(self.ndf >> 2, self.ndf >> 1, downsample=True)
self.block5 = DBlock(self.ndf >> 1, self.ndf, downsample=True)
self.l6 = nn.Linear(self.ndf, 1)
self.activation = nn.ReLU(True)
# Initialise the weights
nn.init.xavier_uniform_(self.l6.weight.data, 1.0)
def forward(self, x):
r"""
Feedforwards a batch of real/fake images and produces a batch of GAN logits.
Args:
x (Tensor): A batch of images of shape (N, C, H, W).
Returns:
Tensor: A batch of GAN logits of shape (N, 1).
"""
#print(x.shape,'x')
h = x
h = self.block1(h)
h = self.block2(h)
h = self.block3(h)
h = self.block4(h)
h = self.block5(h)
h = self.activation(h)
# Global average pooling
h = torch.mean(h, dim=(2, 3)) # WGAN uses mean pooling
output = self.l6(h)
return output
def compute_gradient_penalty_loss(self,
real_images,
fake_images,
gp_scale=10.0):
r"""
Computes gradient penalty loss, as based on:
https://github.com/jalola/improved-wgan-pytorch/blob/master/gan_train.py
Args:
real_images (Tensor): A batch of real images of shape (N, 3, H, W).
fake_images (Tensor): A batch of fake images of shape (N, 3, H, W).
gp_scale (float): Gradient penalty lamda parameter.
Returns:
Tensor: Scalar gradient penalty loss.
"""
# Obtain parameters
N, _, H, W = real_images.shape
device = real_images.device
# Randomly sample some alpha between 0 and 1 for interpolation
# where alpha is of the same shape for elementwise multiplication.
alpha = torch.rand(N, 1)
alpha = alpha.expand(N, int(real_images.nelement() / N)).contiguous()
alpha = alpha.view(N, 4, H, W)
alpha = alpha.to(device)
# Obtain interpolates on line between real/fake images.
interpolates = alpha * real_images.detach() \
+ ((1 - alpha) * fake_images.detach())
interpolates = interpolates.to(device)
interpolates.requires_grad_(True)
# Get gradients of interpolates
disc_interpolates = self.forward(interpolates)
gradients = autograd.grad(outputs=disc_interpolates,
inputs=interpolates,
grad_outputs=torch.ones(
disc_interpolates.size()).to(device),
create_graph=True,
retain_graph=True,
only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
# Compute GP loss
gradient_penalty = (
(gradients.norm(2, dim=1) - 1)**2).mean() * gp_scale
return gradient_penalty
class MyTrainer(mmc.training.Trainer):
def _fetch_data(self, iter_dataloader):
"""
Fetches the next set of data and refresh the iterator when it is exhausted.
Follows python EAFP, so no iterator.hasNext() is used.
"""
try:
real_batch = next(iter_dataloader)
except StopIteration:
iter_dataloader = iter(self.dataloader)
real_batch = next(iter_dataloader)
#real_batch = (real_batch[0].to(self.device),
# real_batch[1].to(self.device))
real_batch = (real_batch.to(self.device), None)
return iter_dataloader, real_batch
#