-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathperceptual_helpers.py
239 lines (201 loc) · 8.33 KB
/
perceptual_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Useful methods for perceptual losses and Gram matrix texture statistics computations.
See: Perceptual Losses for Real-Time Style Transfer, Johnson et al, 2016 [1]
Following [1], we use MSE losses by default.
"""
import torch, torch.nn as nn, torch.nn.functional as F
from networks.vgg_p import Vgg16
#from cnns.block_helpers import LinBnAct, Reshaper, Symmetrizer
from networks.img_proc_utils import TensorNormalizer
#from utils.img_proc_utils import renorm_imnet_from_std
class PerceptualMethodsHandler(nn.Module):
"""
Provides methods for
(1) computing Gram matrices and
(2) calculating perceptual losses.
"""
def __init__(self, use_denorm_renorm=True, vgg_path=None): #, perceptual_loss_weights=None, gram_matrix_loss_weights=None):
super(PerceptualMethodsHandler, self).__init__()
# Initialize VGG-16 network used for perceptual losses and appearance statistics
# It has been pretrained on ImageNet
self.vgg_network = Vgg16(requires_grad=False, local_path=vgg_path)
# We unnormalize from [-1,1] --> [0,1].
# Then we renormalize using ImageNet statistics.
# This is so that the VGG gets stats that it expects.
self.use_denorm_renorm = use_denorm_renorm
self.normalization_corrector = renorm_imnet_from_std()
# Loss term weights, if we want to weight different layers differently
#if perceptual_loss_weights is None:
# self.wp = [1.0, 1.0, 1.0, 1.0]
#else:
# self.wp = perceptual_loss_weights
def vgg(self, I):
if self.use_denorm_renorm:
I = self.normalization_corrector(I)
return self.vgg_network(I)
def features_and_gramians(self, I):
"""
Extract perceptual features and Gramians from input image batch
Args:
I: images
Returns:
(F, M) = (Feature maps, Gramians)
"""
Fs = self.vgg(I)
Ms = [ gram_matrix(F) for F in Fs ]
return (Fs, Ms)
def perceptual_loss_from_feats(self, F1, F2):
"""
Computes the perceptual loss between two sets of feature maps
"""
L = 0.0
for i in range(len(F1)):
L += (F1[i] - F2[i]).pow(2).mean()
return L
def weighted_perceptual_loss_from_feats(self, F1, F2, W, s):
L = 0.0
B, nH, C, height, width = s
for i in range(len(F1)):
BnH, c, h, w = F1[i].shape
L += ( W * # W H C
( F1[i].view(B,nH,c,h,w)
-
F2[i].view(B,nH,c,h,w)
).pow(2).mean(dim=-1).mean(dim=-1).sum(dim=-1)
).sum(dim=-1).mean()
return L
def perceptual_loss(self, I1, I2):
"""
Computes the perceptual loss between two image batches I1 and I2 via VGG16
"""
return self.perceptual_loss_from_feats(self.vgg(I1), self.vgg(I2))
def weighted_perceptual_loss(self, I1, I2, weights):
"""
Computes the perceptual loss between two image batches I1 and I2 via VGG16,
weighted by hypotheses.
I1, I2: B x nH x C x H x W
weights: B x nH
"""
B, nH, C, H, W = I1.shape
def clean(x):
alpha = x[:,:,3,:,:].unsqueeze(2)
return (x[:, :, 0:3, :, :] * alpha)
if I1.shape[2] == 4:
I1 = clean(I1)
if I2.shape[2] == 4:
I2 = clean(I2)
C = 3 # now, after cleaning
return self.weighted_perceptual_loss_from_feats(
self.vgg(I1.view(B*nH, C, H, W)), #.view(B,nH,C,H,W),
self.vgg(I2.view(B*nH, C, H, W)), #.view(B,nH,C,H,W),
weights, I1.shape)
def extract_Gram_statistics(self, I):
"""
Computes the texture statistics of the input images
Args:
I: images (B x C x H x W)
Returns:
the Gram matrices at each intermediate layer of the VGG network
"""
Fs = self.vgg(I)
gram_style = [ gram_matrix(F) for F in Fs ]
return gram_style
def compute_Gram_matrix_loss(self, M1, M2):
"""
Computes a loss (L1) between two texture statistics (Gram matrix) sets.
Args:
M1: first set of Gram matrices
M2: second set of Gram matrices
"""
L = 0.0
for m1, m2 in zip(M1, M2):
L += torch.abs(m1 - m2).mean()
return L
def compute_Gram_matrix_loss_mse(self, M1, M2):
"""
Computes a loss (MSE) between two texture statistics (Gram matrix) sets.
Args:
M1: first set of Gram matrices
M2: second set of Gram matrices
"""
L = 0.0
for m1, m2 in zip(M1, M2):
L += (m1 - m2).pow(2).mean()
return L
def compute_texture_statistics_loss(self, I1, I2, return_gram_matrices=False):
"""
Computes the difference in texture statistics directly from two image
minibatches, by computing their Gram matrices and calculating
a metric upon them.
"""
M1 = self.extract_Gram_statistics(I1)
M2 = self.extract_Gram_statistics(I2)
L = self.compute_Gram_matrix_loss(M1, M2)
if return_gram_matrices: return L, (M1, M2)
return L
def expected_features_shape(self, S):
"""
Returns the expected shape of the VGG16 feature maps, given an
input of size (length = width = height) S.
Args:
S: width/height of the input image
"""
return [ [64, S, S], [128, S//2, S//2], [256, S//4, S//4], [512, S//8, S//8] ]
def expected_gram_style_shape(self):
"""
Returns the expected shapes of the Gram matrices (no dependence on image size).
"""
return [ [64, 64], [128, 128], [256, 256], [512, 512] ]
def get_gramian_predictor(self, latent_dim):
"""
Calling this *constructs* a predictor model
"""
return GramianPredictor(latent_dim, self.expected_gram_style_shape())
def gram_matrix(y):
"""
From:
https://github.com/pytorch/examples/blob/master/fast_neural_style/neural_style/utils.py
"""
(b, ch, h, w) = y.size()
features = y.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (ch * h * w)
return gram
def renorm_imnet_from_std():
"""
Performs (1) denormalization from [-1,1] to [0,1], and (2) (re)normalization based on imagenet statistics
"""
return nn.Sequential(denorm_std(), norm_imnet())
def denorm_std():
"""
Returns a function that unnormalizes an image batch from [-1,1] to [0,1].
I.e., reverses the standard (0.5,0.5,0.5), (0.5,0.5,0.5) pytorch/torchvision image normalizer
Note: returns a class, which can be applied as a function.
"""
return TensorNormalizer(mean=[-1,-1,-1], std=[2,2,2])
def norm_imnet():
"""
Returns a function that performs imagenet-derived normalization on the input tensor.
Note: returns a class, which can be applied as a function.
"""
return TensorNormalizer(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
def denorm_imnet():
"""
Returns a function that undoes the imagenet-based statistical normalization
"""
return TensorNormalizer(mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
std=[1/0.229, 1/0.224, 1/0.255])
"""
It's worth noting the following quote from Johnson et al, regarding the bias introduced by the use of an ImageNet trained VGG:
In these results it is clear that the trained style transfer network is aware of
the semantic content of images. For example in the beach image in Figure 7 the
people are clearly recognizable in the transformed image but the background is
warped beyond recognition; similarly in the cat image, the cat’s face is clear in
the transformed image, but its body is not. One explanation is that the VGG-16
loss network has features which are selective for people and animals since these
objects are present in the classification dataset on which it was trained. Our
style transfer networks are trained to preserve VGG-16 features, and in doing so
they learn to preserve people and animals more than background objects
"""
#