-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
185 lines (157 loc) · 7.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""THE DRIVER CLASS TO RUN THIS CODE"""
"""FUTURE SCOPE, ADD ARGUMENTS AS NEEDED"""
import argparse
import math
import time
import torch
import torch.nn as nn
from models import TPA_LSTM_Modified
from utils import *
import numpy as np;
import importlib
import Optim
parser = argparse.ArgumentParser(description='PyTorch Time series forecasting')
parser.add_argument('--data', type=str, default="data/exchange_rate.txt",
help='location of the data file')
#, required=True
parser.add_argument('--model', type=str, default='TPA_LSTM_Modified',
help='')
parser.add_argument('--hidden_state_features', type=int, default=12,
help='number of features in LSTMs hidden states')
parser.add_argument('--num_layers_lstm', type=int, default=1,
help='num of lstm layers')
parser.add_argument('--hidden_state_features_uni_lstm', type=int, default=1,
help='number of features in LSTMs hidden states for univariate time series')
parser.add_argument('--num_layers_uni_lstm', type=int, default=1,
help='num of lstm layers for univariate time series')
parser.add_argument('--attention_size_uni_lstm', type=int, default=10,
help='attention size for univariate lstm')
parser.add_argument('--hidCNN', type=int, default=10,
help='number of CNN hidden units')
parser.add_argument('--hidRNN', type=int, default=100,
help='number of RNN hidden units')
parser.add_argument('--window', type=int, default=24 * 7,
help='window size')
parser.add_argument('--CNN_kernel', type=int, default=1,
help='the kernel size of the CNN layers')
parser.add_argument('--highway_window', type=int, default=24,
help='The window size of the highway component')
parser.add_argument('--clip', type=float, default=10.,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=3000,
help='upper epoch limit') #30
parser.add_argument('--batch_size', type=int, default=128, metavar='N',
help='batch size')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--seed', type=int, default=54321,
help='random seed')
parser.add_argument('--gpu', type=int, default=None)
parser.add_argument('--log_interval', type=int, default=2000, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, default='model/model.pt',
help='path to save the final model')
parser.add_argument('--cuda', type=str, default=False)
parser.add_argument('--optim', type=str, default='adam')
parser.add_argument('--lr', type=float, default=1e-05)
parser.add_argument('--momentum', type=float, default=0.5)
parser.add_argument('--horizon', type=int, default=12)
parser.add_argument('--skip', type=float, default=24)
parser.add_argument('--hidSkip', type=int, default=5)
parser.add_argument('--L1Loss', type=bool, default=True)
parser.add_argument('--normalize', type=int, default=2)
parser.add_argument('--output_fun', type=str, default='sigmoid')
args = parser.parse_args()
def evaluate(data, X, Y, model, evaluateL2, evaluateL1, batch_size):
model.eval();
total_loss = 0;
total_loss_l1 = 0;
n_samples = 0;
predict = None;
test = None;
for X, Y in data.get_batches(X, Y, batch_size, False):
output = model(X);
if predict is None:
predict = output;
test = Y;
else:
predict = torch.cat((predict, output));
test = torch.cat((test, Y));
scale = data.scale.expand(output.size(0), data.original_columns)
total_loss += evaluateL2(output * scale, Y * scale).data
total_loss_l1 += evaluateL1(output * scale, Y * scale).data
n_samples += (output.size(0) * data.original_columns);
rse = math.sqrt(total_loss / n_samples) / data.rse
rae = (total_loss_l1 / n_samples) / data.rae
predict = predict.data.cpu().numpy();
Ytest = test.data.cpu().numpy();
#print(predict.shape, Ytest.shape)
sigma_p = (predict).std(axis=0);
sigma_g = (Ytest).std(axis=0);
mean_p = predict.mean(axis=0)
mean_g = Ytest.mean(axis=0)
index = (sigma_g != 0);
correlation = ((predict - mean_p) * (Ytest - mean_g)).mean(axis=0) / (sigma_p * sigma_g);
correlation = (correlation[index]).mean();
return rse, rae, correlation;
def train(data, X, Y, model, criterion, optim, batch_size): # X is train set, Y is validation set, data is the whole data
model.train();
total_loss = 0;
n_samples = 0;
for X, Y in data.get_batches(X, Y, batch_size, True):
#print(Y)
model.zero_grad();
output = model(X);
scale = data.scale.expand(output.size(0), data.original_columns)
loss = criterion(output * scale, Y * scale);
loss.backward();
grad_norm = optim.step();
total_loss += loss.data;
n_samples += (output.size(0) * data.original_columns);
return total_loss / n_samples
return 1
Data = Data_utility(args.data, 0.6, 0.2, args.cuda, args.horizon, args.window, args.normalize); #SPLITS THE DATA IN TRAIN AND VALIDATION SET, ALONG WITH OTHER THINGS, SEE CODE FOR MORE
print(Data.rse);
device = 'cpu'
model = eval(args.model).Model(args, Data);
if(args.cuda):
model.cuda()
#print(dict(model.named_parameters()))
if args.L1Loss:
criterion = nn.L1Loss(size_average=False);
else:
criterion = nn.MSELoss(size_average=False);
evaluateL2 = nn.MSELoss(size_average=False);
evaluateL1 = nn.L1Loss(size_average=False)
if args.cuda:
criterion = criterion.cuda()
evaluateL1 = evaluateL1.cuda();
evaluateL2 = evaluateL2.cuda();
nParams = sum([p.nelement() for p in model.parameters()])
print('* number of parameters: %d' % nParams)
#print(list(model.parameters())[0].grad)
list(model.parameters())
#optim = Optim.Optim(model.parameters(), args.optim, args.lr, args.clip,)
optim = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) #.01 1e-05
best_val = 10000000;
try:
print('begin training');
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
train_loss = train(Data, Data.train[0], Data.train[1], model, criterion, optim, args.batch_size)
#print(train_loss)
val_loss, val_rae, val_corr = evaluate(Data, Data.valid[0], Data.valid[1], model, evaluateL2, evaluateL1, args.batch_size);
print('| end of epoch {:3d} | time: {:5.2f}s | train_loss {:5.4f} | valid rse {:5.4f} | valid rae {:5.4f} | valid corr {:5.4f}'.format(
epoch, (time.time() - epoch_start_time), train_loss, val_loss, val_rae, val_corr))
# Save the model if the validation loss is the best we've seen so far.
if val_loss < best_val:
# with open(args.save, 'wb') as f:
# torch.save(model, f)
best_val = val_loss
if epoch % 5 == 0:
test_acc, test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1,
args.batch_size);
print("test rse {:5.4f} | test rae {:5.4f} | test corr {:5.4f}".format(test_acc, test_rae, test_corr))
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')