-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix_equation.tex
480 lines (439 loc) · 11.8 KB
/
matrix_equation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
\section{Matrix Equation}
\subsection{Linear Combinations and Span}
\begin{definition}
Linear Combinations
\newline
A is a \(m\times n\) matrix with columns \(\Vec{a_1}, \dots, \Vec{a_n}\) and \(x\in \Re^n\), then the matrix-vector product \(A\Vec{x}\) is a linear combination of the columns of A:
\begin{equation}
A\Vec{x} =
\begin{pmatrix}
\spike{15pt}{$\Vec{a_1}$} & \spike{15pt}{$\Vec{a_2}$} & \spike{15pt}{$\Vec{a_3}$}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = x_1 \Vec{a_1} + x_2 \Vec{a_2} + x_3 \Vec{a_3}
\end{equation}
\end{definition}
\begin{definition}
Span
\newline
The Span of a set of vectors \(\Vec{v_1}, \dots, \Vec{v_p}\) in \(Re^n\) is: \[\text{Span}\{\Vec{v_1}, \dots, \Vec{v_p}\} = \{x_1 \Vec{v_1} + \dots + x_2 \Vec{v_p} \; | \; x_1, \dots, x_p \in \Re\}\]
\end{definition}
\noindent
For what vectors \(\Vec{b} = \begin{pmatrix}
b_1 \\ b_2 \\ b_3
\end{pmatrix}\), does the equation have a solution?
\begin{equation}
\begin{pmatrix}
1 & 3 & 4 \\
2 & 8 & 4 \\
0 & 1 & -2
\end{pmatrix}
\Vec{x} = \Vec{b}
\end{equation}
\noindent
\textbf{Solution: Row Reduce \([A | b]\)}
\begin{align}
\begin{pmatrix}[ccc|c]
1 & 3 & 4 & b_1 \\
2 & 8 & 4 & b_2 \\
0 & 1 & -2 & b_3
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 3 & 4 & b_1 \\
0 & 2 & -4 & -2b_1 + b_2 \\
0 & 1 & -2 & b_3
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 3 & 4 & b_1 \\
0 & 1 & -2 & b_3 \\
0 & 2 & -4 & -2b_1 + b_2
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 3 & 4 & b_1 \\
0 & 1 & -2 & b_3 \\
0 & 0 & 0 & -2b_1 + b_2 - 2b_3
\end{pmatrix}
\end{align}
\noindent
\(-2b_1 + b_2 - 2b_3 \neq 0\) is a pivot. Furthermore, the system will be consistent when \(-2b_1 + b_2 - 2b_3 = 0\).
\noindent
\newline
\textbf{Q: When is \(\Vec{b} = \begin{pmatrix}
b_1 \\ b_2 \\ b_3
\end{pmatrix}\) in the span of \(\begin{pmatrix}
1 \\ 2 \\ 0
\end{pmatrix}\), \(\begin{pmatrix}
3 \\ 8 \\ 1
\end{pmatrix}\), \(\begin{pmatrix}
4 \\ 4 \\ -2
\end{pmatrix}\)?}
\noindent
Same solution. \(\Vec{b}\) is in the span of the vectors when it can be expressed as a linear combination. In other words, some real scalars \(x_1, x_2, x_3\) can be used to create a linear combination of the three column vectors to result in \(\Vec{b}\).
\noindent
\newline
\textbf{Let A = \(\begin{pmatrix}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{pmatrix}\) and \(\Vec{b} = \begin{pmatrix}
b_1 \\ b_2 \\ b_3
\end{pmatrix}\). Is the equation \(A\Vec{x} = \Vec{b}\) consistent for all possible \(b_1, b_2, b_3\)?}
\noindent
Solution: Row Reduce A
\begin{align}
\begin{pmatrix}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{pmatrix} \\
\begin{pmatrix}
1 & 3 & 4 \\
0 & 7 & 5 \\
0 & 0 & 0
\end{pmatrix} \\
\end{align}
\noindent
If A does not have a pivot in every row, then some choice of \(\Vec{b}\) will make a pivot in \([A|b]\) inconsistent.
\subsection{Solution Sets of Linear Systems}
\begin{definition}
Homogeneity
Linear systems of the form \(A\Vec{x} = \Vec{0}\) are homogeneous.
Linear systems of the form \(A\Vec{x} = \Vec{b}\) are inhomogeneous.
\end{definition}
\noindent
Because homogeneous systems always have the trivial solution, \(\Vec{x} = \Vec{0}\), the interesting question is how many solutions the system will have.
\noindent
\newline
\textbf{Solution Set for a Homogeneous System:}
\noindent
\textit{Row Reduce \([A|\Vec{0}]\)}
\begin{align}
\begin{pmatrix}[ccc|c]
1 & 3 & 1 & 0 \\
2 & -1 & 5 & 0 \\
1 & 0 & -2 & 0
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 3 & 1 & 0 \\
0 & -7 & -7 & 0 \\
0 & -3 & -3 & 0
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 3 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 3 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\end{align}
\noindent
\newline
Rewrite the Equations:
\begin{align}
x_1 - 2x_3 &= 0 \\
x_2 + x_3 &= 0 \\
x_3 &= x_3
\end{align}
\noindent
\newline
Move free variables to RHS. This results in parametric equation form.
\begin{align}
x_1 &= 2x_3 \\
x_2 &= -x_3 \\
x_3 &= x_3
\end{align}
\noindent
\newline
Therefore, the vector parametric form is:
\begin{equation}
\Vec{x} = x_3 \begin{pmatrix}
2 \\
-1 \\
1
\end{pmatrix}
\end{equation}
\noindent
The solution is a line in \(\Re^3\).
\noindent
\newline
\textbf{Inhomogeneous Case:}
\begin{align}
\begin{pmatrix}[ccc|c]
1 & 3 & 1 & 9 \\
2 & -1 & 5 & 11 \\
1 & 0 & -2 & 6
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 3 & 1 & 9 \\
0 & -7 & -7 & -7 \\
0 & -3 & -3 & -3
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 3 & 1 & 9 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{pmatrix} \\
\begin{pmatrix}[ccc|c]
1 & 0 & -2 & 6 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\end{align}
\noindent
\newline
Rewrite the Equations:
\begin{align}
x_1 - 2x_3 &= 6 \\
x_2 + x_3 &= 1 \\
x_3 &= x_3
\end{align}
\noindent
\newline
Move free variables to RHS. This results in parametric equation form.
\begin{align}
x_1 &= 6 + 2x_3 \\
x_2 &= 1 - x_3 \\
x_3 &= x_3
\end{align}
\noindent
\newline
Therefore, the vector parametric form is:
\begin{equation}
\Vec{x} = \begin{pmatrix}
6 \\
1 \\
0
\end{pmatrix} + x_3 \begin{pmatrix}
2 \\
-1 \\
1
\end{pmatrix}
\end{equation}
\noindent
The solution is a line in \(\Re^3\). The particular solution is \(\begin{pmatrix}
6 \\
1 \\
0
\end{pmatrix}\). The general solutions to \(A\Vec{x}=\Vec{b}\) are general solutions of \(A\Vec{x}=\Vec{0}\) plus a particular solution.
\noindent
\newline
\textbf{Find general solutions to both \(A\Vec{x}=\Vec{b}\) and \(A\Vec{x}=\Vec{0}\).}
\begin{align}
A&=\begin{pmatrix}
1 & 3 & 0 & -4 \\
2 & 6 & 0 & -8
\end{pmatrix} \\
\Vec{x} &= \begin{pmatrix}
1 \\ 2 \\ 3 \\ 4
\end{pmatrix} \\
\Vec{b} &= \begin{pmatrix}
-9 \\ -18
\end{pmatrix}
\end{align}
\noindent
\newline
Row reduce \([A | b]\).
\begin{align}
\begin{pmatrix}[cccc|c]
1 & 3 & 0 & -4 & -9 \\
2 & 6 & 0 & -8 & -18
\end{pmatrix} \\
\begin{pmatrix}[cccc|c]
1 & 3 & 0 & -4 & -9 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\end{align}
\noindent
\newline
Rewrite the Equations:
\begin{align}
x_1 + 3x_2 -4x_4 &= -9 \\
x_2 &= x_2 \\
x_3 &= x_3 \\
x_4 &= x_4 \\
\end{align}
\noindent
\newline
Move free variables to RHS. This results in parametric equation form.
\begin{align}
x_1 &= -9 - 3x_2 + 4 x_4 \\
x_2 &= x_2 \\
x_3 &= x_3 \\
x_4 &= x_4 \\
\end{align}
\noindent
\newline
Therefore, the vector parametric form is:
\begin{equation}
\Vec{x} = \begin{pmatrix}
-9 \\
0 \\
0 \\
0
\end{pmatrix} + x_2 \begin{pmatrix}
-3 \\
1 \\
0 \\
0
\end{pmatrix} + x_3 \begin{pmatrix}
0 \\
0 \\
1 \\
0
\end{pmatrix} + x_4 \begin{pmatrix}
4 \\
0 \\
0 \\
1
\end{pmatrix}
\end{equation}
The solution is a 3D-object in \(\Re^4\). The particular solution is \(\begin{pmatrix}
-9 \\
0 \\
0 \\
0
\end{pmatrix}\). The general solutions to \(A\Vec{x}=\Vec{b}\) are general solutions of \(A\Vec{x}=\Vec{0}\) plus a particular solution. Therefore, the solution to \(A\Vec{x} = \Vec{0}\) is:
\begin{equation}
\Vec{x} = x_2 \begin{pmatrix}
-3 \\
1 \\
0 \\
0
\end{pmatrix} + x_3 \begin{pmatrix}
0 \\
0 \\
1 \\
0
\end{pmatrix} + x_4 \begin{pmatrix}
4 \\
0 \\
0 \\
1
\end{pmatrix}
\end{equation}
\subsection{Linear Independence}
\begin{definition}
An indexed set of vectors \(\{\Vec{v_1}, \dots, \Vec{v_p}\}\) in \(Re^n\) is said to be linearly independent if the vector equation:
\[x_1\Vec{v_1} + x_2\Vec{v_2} + \dots + x_p \Vec{v_p} = 0\]
has only the trivial solution. The set \(\{\Vec{v_1}, \dots, \Vec{v_p}\}\) is said to be linearly dependent if the vector equation \[x_1\Vec{v_1} + x_2\Vec{v_2} + \dots + x_p \Vec{v_p} = 0\] has an infinite number of solutions where some values in \(x_1, \dots, x_p\) are non-zero.
\end{definition}
\noindent
\newline
\textbf{Ex. 1: Is the following linearly independent: \(\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix}, \begin{pmatrix}2 \\ 1 \\ 3\end{pmatrix}, \begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix}\)}
\noindent
\newline
Solution:
\begin{align}
\begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 1 \\
1 & 3 & 1
\end{pmatrix} \\
\begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix} \\
\begin{pmatrix}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix} \\
\end{align}
\noindent
\newline
Rewrite the Equations:
\begin{align}
x_1 - 2x_3 &= 0 \\
x_2 + x_3 &= 0 \\
x_3 &= x_3
\end{align}
\noindent
\newline
Move free variables to RHS. This results in parametric vector form.
\begin{equation}
\Vec{x} = x_3 \begin{pmatrix}
2 \\
-1 \\
1
\end{pmatrix}
\end{equation}
\noindent
\newline
Therefore, the system is linearly dependent because there are non-trivial solutions to the coefficient matrix. Specifically, one dependence relation is:
\begin{equation}
\begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 1 \\
1 & 3 & 1
\end{pmatrix} \begin{pmatrix}
2 \\
-1 \\
1
\end{pmatrix} = 2\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix} - \begin{pmatrix}2 \\ 1 \\ 3\end{pmatrix} + \begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix} = \begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}
\end{equation}
\noindent
\newline
\textbf{Ex. 2: Is the following linearly independent: \(\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix}, \begin{pmatrix}2 \\ 2 \\ 0\end{pmatrix}, \begin{pmatrix}0 \\ 2 \\ 1\end{pmatrix}\)}
\noindent
\newline
Solution:
\begin{align}
\begin{pmatrix}[ccc|c]
1 & 2 & 0 & 0\\
0 & 2 & 2 & 0 \\
1 & 0 & 1 & 0
\end{pmatrix} \\
\begin{pmatrix}
1 & 2 & 0 & 0\\
0 & 1 & 1 & 0 \\
0 & -2 & 1 & 0
\end{pmatrix} \\
\begin{pmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix} \\
\end{align}
\noindent
\newline
Rewrite the Equations:
\begin{align}
x_1 &= 0 \\
x_2 &= 0 \\
x_3 &= 0
\end{align}
\noindent
\newline
Therefore, the system is linearly independent because there is only the trivial solution to the coefficient matrix.
\begin{equation}
\begin{pmatrix}
1 & 2 & 0 \\
0 & 2 & 2 \\
1 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} = 0\begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix} + 0\begin{pmatrix}2 \\ 2 \\ 0\end{pmatrix} + 0\begin{pmatrix}0 \\ 2 \\ 1\end{pmatrix} = \begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}
\end{equation}
\noindent
\newline
\textbf{Ex. 3: Is the following linearly independent: \(\begin{pmatrix}1 \\ 0 \\ 0\end{pmatrix}, \begin{pmatrix}0 \\ 1 \\ 0\end{pmatrix}, \begin{pmatrix}3 \\ 2 \\ 0\end{pmatrix}\)}
\noindent
\newline
Solution: Linearly dependent. A dependence relation is:
\begin{equation}
3\begin{pmatrix}1 \\ 0 \\ 0\end{pmatrix} + 2\begin{pmatrix}0 \\ 1 \\ 0\end{pmatrix} - \begin{pmatrix}3 \\ 2 \\ 0\end{pmatrix} = \begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}
\end{equation}