-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix_operations.tex
47 lines (40 loc) · 1.16 KB
/
matrix_operations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
\section{Matrix Operations}
\subsection{Properties}
\noindent
Given that A is an \(m \times n\) matrix.
\noindent
\newline
The following are \textbf{facts}:
\begin{enumerate}
\item Associative: \((AB)C = A(BC)\)
\item Left Distributive: \(A(B+C) = AB + AC\)
\item Right Distributive: \((A+B)C = AC + BC\)
\item Identity: \(I_m A = A I_n\)
\end{enumerate}
\noindent
\newline
The following are \textbf{non-facts}:
\begin{enumerate}
\item Non-commutative: \(AB \ne BA\)
\item Non-cancellation: \(AB = AC\), does not imply \(B=C\)
\item Zero Divisors: \(AB = 0\) does not imply that either \(A=0\) or \(B=0\).
\end{enumerate}
\subsection{Transpose of a Matrix}
\noindent
\(A^T\) is the matrix whose columns are the rows of \(A\).
\noindent
\newline
Properties:
\begin{enumerate}
\item \((A^T)^T=A\)
\item \((A+B)^T = A^T + B^T\)
\item \((rA)^T = rA^T\)
\item \((AB)^T = B^T A^T\)
\end{enumerate}
\subsection{Matrix Powers}
\begin{equation}
A^k = AA\dots A
\end{equation}
\noindent
\newline
When \(A\) is a diagonal matrix (non-zero terms only on the main diagonal), the power computation just exponentiates the main diagonal elements.