-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
53 lines (44 loc) · 2.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from absl import app
from absl import flags
from absl import logging
from clu import platform
import jax
from ml_collections import config_flags
import tensorflow as tf
import train_simclr
from audax.training_utils import train_supervised, eval_supervised
FLAGS = flags.FLAGS
flags.DEFINE_string('workdir', None, 'Directory to store model data.')
flags.DEFINE_string('mode', "ssl", 'Mode (Default: ssl, Options: [ssl, train, eval])')
flags.DEFINE_bool("no_wandb", False, "To switch off wandb_logging")
flags.DEFINE_integer("seed", 0, "seed")
config_flags.DEFINE_config_file(
'config',
None,
'File path to the training hyperparameter configuration.',
lock_config=True)
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
# Hide any GPUs from TensorFlow. Otherwise TF might reserve memory and make
# it unavailable to JAX.
tf.config.experimental.set_visible_devices([], 'GPU')
logging.info('JAX process: %d / %d', jax.process_index(), jax.process_count())
logging.info('JAX local devices: %r', jax.local_devices())
# Add a note so that we can tell which task is which JAX host.
# (Depending on the platform task 0 is not guaranteed to be host 0)
platform.work_unit().set_task_status(f'process_index: {jax.process_index()}, '
f'process_count: {jax.process_count()}')
platform.work_unit().create_artifact(platform.ArtifactType.DIRECTORY,
FLAGS.workdir, 'workdir')
if FLAGS.mode == "ssl":
train_simclr.train_and_evaluate(FLAGS.config, FLAGS.workdir, FLAGS.no_wandb, FLAGS.seed)
elif FLAGS.mode == "train":
train_supervised.train_and_evaluate(FLAGS.config, FLAGS.workdir, FLAGS.no_wandb, FLAGS.seed)
elif FLAGS.mode == "eval":
eval_supervised.evaluate(FLAGS.workdir, "AUTO")
else:
raise ValueError(f"Unsupported FLAGS.training_mode: {FLAGS.mode}. Supported are ['train', 'eval']")
if __name__ == '__main__':
flags.mark_flags_as_required(['workdir'])
app.run(main)