forked from adityapotdar23/Cars-101
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
267 lines (232 loc) · 12.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# import flask
# from flask import Flask, request
import pandas as pd
import numpy as np
import pickle
import xgboost as xg
import keras
from PIL import Image
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense, Conv2D, MaxPooling2D
import cv2
import tensorflow as tf
# import flasgger
# from flasgger import Swagger
import streamlit as st
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
transmission_dct = {'Automatic': 0, 'Manual': 1}
location_dct = {'Ahmedabad': 0, 'Bangalore': 1, 'Chennai': 2, 'Coimbatore': 3, 'Delhi': 4, 'Hyderabad': 5, 'Jaipur': 6, 'Kochi': 7, 'Kolkata': 8, 'Mumbai': 9, 'Pune': 10}
fuel_dct = {'CNG': 0, 'Diesel': 1, 'LPG': 2, 'Petrol': 3}
owner_dct = {'First': 0, 'Fourth & Above': 1, 'Second': 2, 'Third': 3}
brand_dct = {'audi': 0, 'bmw': 1, 'datsun': 2, 'fiat': 3, 'ford': 4, 'honda': 5, 'hyundai': 6, 'isuzu': 7, 'jaguar': 8, 'jeep': 9, 'land': 10, 'mahindra': 11, 'maruti': 12, 'mercedes-benz': 13, 'mini': 14, 'mitsubishi': 15, 'nissan': 16, 'porsche': 17, 'renault': 18, 'skoda': 19, 'tata': 20, 'toyota': 21, 'volkswagen': 22, 'volvo': 23}
model_dct = {'1': 0, '3': 1, '5': 2, '6': 3, '7': 4, '800': 5, 'a': 6, 'a-star': 7, 'a3': 8, 'a4': 9, 'a6': 10, 'a7': 11, 'a8': 12, 'accent': 13, 'accord': 14, 'alto': 15, 'amaze': 16, 'ameo': 17, 'aspire': 18, 'avventura': 19, 'b': 20, 'baleno': 21, 'bolero': 22, 'bolt': 23, 'boxster': 24, 'br-v': 25, 'brio': 26, 'brv': 27, 'c-class': 28, 'camry': 29, 'cayenne': 30, 'cayman': 31, 'cedia': 32, 'celerio': 33, 'ciaz': 34, 'city': 35, 'civic': 36, 'cla': 37, 'clubman': 38, 'compass': 39, 'cooper': 40, 'corolla': 41, 'countryman': 42, 'cr-v': 43, 'creta': 44, 'crosspolo': 45, 'duster': 46, 'dzire': 47, 'e-class': 48, 'ecosport': 49, 'eeco': 50, 'elantra': 51, 'elite': 52, 'endeavour': 53, 'eon': 54, 'ertiga': 55, 'esteem': 56, 'estilo': 57, 'etios': 58, 'evalia': 59, 'fabia': 60, 'fiesta': 61, 'figo': 62, 'fluence': 63, 'fortuner': 64, 'freestyle': 65, 'getz': 66, 'gl-class': 67, 'gla': 68, 'glc': 69, 'gle': 70, 'gls': 71, 'go': 72, 'grand': 73, 'grande': 74, 'hexa': 75, 'i10': 76, 'i20': 77, 'ignis': 78, 'ikon': 79, 'indica': 80, 'indigo': 81, 'innova': 82, 'jazz': 83, 'jeep': 84, 'jetta': 85, 'koleos': 86, 'kuv': 87, 'kwid': 88, 'laura': 89, 'linea': 90, 'lodgy': 91, 'logan': 92, 'm-class': 93, 'manza': 94, 'micra': 95, 'mobilio': 96, 'montero': 97, 'mux': 98, 'nano': 99, 'new': 100, 'nexon': 101, 'nuvosport': 102, 'octavia': 103, 'omni': 104, 'outlander': 105, 'pajero': 106, 'panamera': 107, 'passat': 108, 'petra': 109, 'platinum': 110, 'polo': 111, 'pulse': 112, 'punto': 113, 'q3': 114, 'q5': 115, 'q7': 116, 'qualis': 117, 'quanto': 118, 'r-class': 119, 'rapid': 120, 'redi-go': 121, 'renault': 122, 'ritz': 123, 'rover': 124, 'rs5': 125, 's': 126, 's-cross': 127, 's60': 128, 's80': 129, 'safari': 130, 'santa': 131, 'santro': 132, 'scala': 133, 'scorpio': 134, 'slc': 135, 'slk-class': 136, 'sonata': 137, 'ssangyong': 138, 'sumo': 139, 'sunny': 140, 'superb': 141, 'swift': 142, 'sx4': 143, 'teana': 144, 'terrano': 145, 'thar': 146, 'tiago': 147, 'tigor': 148, 'tiguan': 149, 'tt': 150, 'tucson': 151, 'tuv': 152, 'v40': 153, 'vento': 154, 'venture': 155, 'verito': 156, 'verna': 157, 'vitara': 158, 'wagon': 159, 'wrv': 160, 'x-trail': 161, 'x1': 162, 'x3': 163, 'x5': 164, 'x6': 165, 'xc60': 166, 'xc90': 167, 'xcent': 168, 'xe': 169, 'xenon': 170, 'xf': 171, 'xj': 172, 'xuv300': 173, 'xuv500': 174, 'xylo': 175, 'yeti': 176, 'zen': 177, 'zest': 178}
# data = pd.read_csv('./Dataset/dataset_temp.csv')
@st.cache_data # 👈 Add the caching decorator
def load_data(url):
df = pd.read_csv(url, delimiter=',')
return df
data = load_data('https://github.com/adityapotdar23/4-Nearest-Coders_Datahack/raw/main/Dataset/dataset_temp.csv')
# data_for_range = pd.read_csv('./Dataset/final_data.csv')
data_for_range = load_data('https://github.com/adityapotdar23/4-Nearest-Coders_Datahack/raw/main/Dataset/final_data.csv')
# st.dataframe(data)
@st.cache_resource()
def load_regressor():
pickle_in = open('model.pkl', 'rb')
return pickle.load(pickle_in)
@st.cache_resource()
def load_annotation():
return keras.models.load_model("Image-annotation.h5")
@st.cache_resource()
def load_cnn():
return keras.models.load_model("model_cnn.h5")
regressor = load_regressor()
annotation = load_annotation()
classifier = load_cnn()
from keras.utils import load_img, img_to_array
mapper = {1: "damaged", 0: "Not damaged"}
def predict_image(model, img):
# print(img.shape)
# img = load_img(img_path, target_size=(100,100))
# plt.imshow(img)
x = img_to_array(img)
# print(np.shape(x))
x = img.astype(np.float16)
# print(np.shape(x))
# img = np.reshape(img, (100, 100,3))
x /= 255
x = np.expand_dims(x, axis=0)
preds = model.predict(x)
answer = np.argmax(preds)
print(mapper[answer])
return mapper[answer]
class_names = ['Daiatsu_Core',
'Daiatsu_Hijet',
'Daiatsu_Mira',
'FAW_V2',
'FAW_XPV',
'Honda_BRV',
'Honda_City_aspire',
'Honda_Grace',
'Honda_Vezell',
'Honda_city_1994',
'Honda_city_2000',
'Honda_civic_1994',
'Honda_civic_2005',
'Honda_civic_2007',
'Honda_civic_2015',
'Honda_civic_2018',
'KIA_Sportage',
'Suzuki_Every',
'Suzuki_Mehran',
'Suzuki_alto_2007',
'Suzuki_alto_2019',
'Suzuki_alto_japan_2010',
'Suzuki_carry',
'Suzuki_cultus_2018',
'Suzuki_cultus_2019',
'Suzuki_highroof',
'Suzuki_kyber',
'Suzuki_liana',
'Suzuki_margala',
'Suzuki_swift',
'Suzuki_wagonR_2015',
'Toyota HIACE 2000',
'Toyota_Aqua',
'Toyota_Hiace_2012',
'Toyota_Landcruser',
'Toyota_Passo',
'Toyota_Prado',
'Toyota_Vigo',
'Toyota_Vitz',
'Toyota_Vitz_2010',
'Toyota_axio',
'Toyota_corolla_2000',
'Toyota_corolla_2007',
'Toyota_corolla_2011',
'Toyota_corolla_2016',
'Toyota_fortuner',
'Toyota_pirus',
'Toyota_premio']
brands = list(brand_dct.keys())
def predict_img_annot(model, img):
img_array = tf.keras.preprocessing.image.img_to_array(img)
img_array/=255
img_array = tf.expand_dims(img_array, 0)
predictions = model.predict(img_array)
predicted_class = class_names[np.argmax(predictions[0])]
confidence = round(100 * (np.max(predictions[0])), 2)
return predicted_class
def predict_price(location, kms_driven, fuel_type, transmission, owner_type, mileage, engine, power, seats, used_car_price, brand, model, car_age):
# print(location)
newbie = np.array([[location_dct[location], kms_driven, fuel_dct[fuel_type], transmission_dct[transmission], owner_dct[owner_type], mileage, engine, power, seats, used_car_price, brand_dct[brand], model_dct[model], car_age]])
# print(newbie)
v = data_for_range[(data_for_range['Brand']==brand) & (data_for_range['Model']==model)]['Price Range'].values[0]
prediction=regressor.predict(newbie)
if prediction > used_car_price:
return used_car_price, v
return prediction, v
def analyzer_brand(brand):
# df = pd.read_csv('./Dataset/train-new-car-dataset.csv')
df = load_data('https://github.com/adityapotdar23/4-Nearest-Coders_Datahack/raw/main/Dataset/train-new-car-dataset.csv')
df['Car_age'] = df.Year.apply(lambda x: 2023-x)
df_brand = df[df['Brand']==brand]
car_no = df_brand.shape[0]
st.subheader(f'The total no of cars of {brand} brand is {car_no}')
avg_used_cost = df_brand['Price'].mean()
st.subheader(f'The average cost of the {brand} Brand car is {round(avg_used_cost, 2)} lacs')
cheapest_car_price = df_brand.iloc[np.argmin(df_brand['Price'])]['Price']
cheapest_variant = df_brand.iloc[np.argmin(df_brand['Price'])][['Model','Variant']].values
costliest_car_price = df_brand.iloc[np.argmax(df_brand['Price'])]['Price']
costliest_variant = df_brand.iloc[np.argmax(df_brand['Price'])][['Model','Variant']].values
st.subheader(f'The cheapest cost of the {brand} Brand car is {cheapest_car_price} lacs with the model {cheapest_variant[0]} and variant would be {cheapest_variant[1]}')
st.subheader(f'The costliest cost of the {brand} Brand car is {costliest_car_price} lacs with the model {costliest_variant[0]} and variant would be {costliest_variant[1]}')
# Graphs
# col1,col2 = st.columns(2)
# with col1:
st.subheader('Selling in each cities')
plt.style.use('fivethirtyeight')
plt.bar(df_brand['Location'], df_brand['Price'])
plt.xticks(rotation ='vertical')
plt.xlabel('Cities')
plt.ylabel('Average Selling Price(in lacs)')
st.pyplot(plt)
# with col2:
# st.subheader('Selling in each cities')
# plt.style.use('fivethirtyeight')
# plt.bar(df_brand['Car_age'], df_brand['Price'])
# plt.xticks(rotation ='vertical')
# plt.xlabel('Cars Age(in years)')
# plt.ylabel('Average Selling Price(in lacs)')
# st.pyplot(plt)
# with col2:
# st.header("Most busy month")
# busy_month = helper.month_activity_map(selected_user, df)
# fig, ax = plt.subplots()
# ax.bar(busy_month.index, busy_month.values,color='orange')
# plt.xticks(rotation='vertical')
# st.pyplot(fig)
def main():
st.title("Car 101")
st.sidebar.title("Car 101")
st.sidebar.subheader("Second Hand Car Price Prediction")
st.sidebar.image('./logo.jpg')
brand=st.text_input('Brand',placeholder= 'Type Here')
# sidebar stuff
brandzer = st.sidebar.selectbox('Brands',brands)
anaylzer = st.sidebar.button("Show Analysis")
# model=st.text_input('Model', placeholder='Type Here')
col1,col2 = st.columns(2)
with col1:
kms_driven=st.number_input('kms driven')
engine=st.number_input('Engine')
power=st.number_input('Power')
mileage=st.number_input('Mileage')
used_car_price = st.number_input('Price at which car was purchased')
# print(kms_driven,engine,power,mileage,used_car_price)
with col2:
model=st.selectbox('Model', list(data[data['Brand']==brand]['Model'].unique()))
transmission = st.selectbox("Transmission",['Manual', 'Automatic'])
owner_type = st.selectbox("Owner Type",['First', 'Second','Third','Fourth & Above'])
year_of_purchase=st.selectbox('Year of purchase', [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019])
fuel_type = st.selectbox("Fuel type",['Petrol', 'Diesel', 'CNG','LPG'])
# print(transmission,owner_type,location,year_of_purchase,fuel_type)
location=st.selectbox('Location', ['Mumbai', 'Pune', 'Chennai', 'Coimbatore', 'Hyderabad', 'Jaipur', 'Kochi', 'Kolkata', 'Delhi', 'Bangalore', 'Ahmedabad'])
seats = st.slider('Number of Seats', 2, 10)
car_age = 2023 - year_of_purchase
result = ""
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = cv2.imdecode(np.fromstring(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR)
st.image(image, channels="BGR")
image1 = cv2.resize(image, (100, 100))
image2 = cv2.resize(image, (224, 224))
# st.image(image, channels="BGR")
# image = Image.open(uploaded_file)
# img = st.image(uploaded_file, caption='Uploaded image')
# print(type(img))
# img = st.image(uploaded_file)
# To read file as bytes:
# bytes_data = uploaded_file.getvalue()
# st.write(bytes_data)
# data = bytes_data.decode('utf-8')
# st.text(data)
# print(type(img))
# imager = cv2.imread(image)
# print(location, kms_driven, fuel_type, transmission, owner_type, mileage, engine, power, seats, used_car_price, brand, model, car_age)
if(st.button("Predict")):
result, val = predict_price(location, kms_driven, fuel_type, transmission, owner_type, mileage, engine, power, seats, used_car_price, brand, model, car_age)
f_c = predict_image(classifier, image1)
if f_c=='damaged':
st.error("The selling price will decrease more upto 30% since the car is damaged.")
st.success(f"The predicted value is Rs. {result} lakh")
st.success(f"The current price range of the car for buying the given model is {val}")
f_a = predict_img_annot(annotation, image2)
st.success(f"The car is {f_a}")
# st.success(f"The car is {f_c}")
st.title("Anaylsis of the car brands:")
if(anaylzer):
analyzer_brand(brandzer)
if __name__=='__main__':
main()