-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbody_chart.ts
155 lines (126 loc) · 3.75 KB
/
body_chart.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import { parse as parseCSV } from "https://deno.land/[email protected]/encoding/csv.ts";
import {
basename,
dirname,
fromFileUrl,
join as pathJoin,
} from "https://deno.land/[email protected]/path/mod.ts";
type Color = [number, number, number];
const SEGMENTS = 82;
const SVG_OFFSET = 4;
const COLORS: Color[] = [
[254, 229, 217],
[252, 174, 145],
[251, 106, 74],
[222, 45, 38],
[165, 15, 21],
];
const REVERSED_COLORS = Array.from(COLORS).reverse();
/** distance: 0 to 1 */
const interpolateColor = (distance: number): Color => {
const distanceInColor = distance * (COLORS.length - 1);
const from = COLORS[Math.floor(distanceInColor)];
const to = COLORS[Math.ceil(distanceInColor)];
distance = distanceInColor - Math.floor(distanceInColor);
return from.map((fromVal, i) =>
Math.round(fromVal + distance * (to[i] - fromVal))
) as Color;
};
const rgb = (color: Color) => {
color = color.map((val) => Math.floor(val)) as Color;
return `rgb(${color[0]},${color[1]},${color[2]})`;
};
const resourcePath = (input: string): string => {
return pathJoin(
dirname(fromFileUrl(import.meta.url)),
"resources",
input,
);
};
if (Deno.args.includes("--help")) {
console.log(`body_chart: generates body chart images from CSV files
USAGE:
body_chart <INPUT_FILE1> [<INPUT_FILE2>...]
The images will be found in the same directory as the files.`);
Deno.exit(0);
}
const BODY_IMAGE = await Deno.readTextFile(resourcePath("body.png.b64.txt"));
const SVG_CONTENTS = (await Deno.readTextFile(
resourcePath("chart.svg"),
))
.replace("$IMAGE_DATA", BODY_IMAGE)
.replace(
"$GRADIENT",
REVERSED_COLORS.map((color, i) =>
` <stop offset="${100 * i / (COLORS.length - 1)}%" stop-color="${
rgb(color)
}" stop-opacity="0.8" />`
).join("\n"),
)
.split("\n");
const inputs = Deno.args;
let errors = 0;
for (const input of inputs) {
let text: string;
try {
text = await Deno.readTextFile(input);
} catch (_) {
console.error(`Could not load file: ${input}`);
errors += 1;
break;
}
let values: number[][];
try {
values = (await parseCSV(text) as string[][])
.filter((row) =>
!Number.isNaN(parseInt(row[0], 10)) &&
!Number.isNaN(parseInt(row[1], 10))
)
.map((row) => row.slice(1).map((val) => parseInt(val, 10)));
} catch (_) {
console.error(`Could not parse CSV: ${input}`);
errors += 1;
break;
}
if (!values.every((list) => list.length === SEGMENTS)) {
console.error(
`Invalid CSV (expecting ${SEGMENTS} values in each line): ${input}`,
);
}
for (const type of ["any", "worst"] as const) {
const output = pathJoin(
dirname(input),
basename(input, ".csv") + `.${type}.png`,
);
const threshold = type === "any" ? 1 : 2;
const tally = values.reduce(
(acc, curr) => acc.map((val, i) => curr[i] >= threshold ? val + 1 : val),
Array.from({ length: SEGMENTS }, () => 0),
);
const max = Math.max(...tally);
const svg = Array.from(SVG_CONTENTS);
for (let i = 0; i < SEGMENTS; i++) {
let fill: string;
if (tally[i] === 0) {
fill = `fill-opacity="0"`;
} else {
const color = interpolateColor((tally[i] - 1) / (max - 1));
fill = `fill="${rgb(color)}"`;
}
svg[SVG_OFFSET + i] = svg[SVG_OFFSET + i].replace(
`fill=""`,
fill,
);
}
const tmpSvg = await Deno.makeTempFile();
const svgOutput = svg
.join("\n")
.replace("$MAX", max.toString());
await Deno.writeTextFile(tmpSvg, svgOutput);
const convertProcess = Deno.run({ cmd: ["convert", tmpSvg, output] });
await convertProcess.status();
convertProcess.close();
console.log(`Generating: ${output}`);
await Deno.remove(tmpSvg);
}
}