diff --git a/src/coastseg/coastseg_map.py b/src/coastseg/coastseg_map.py index 94344926..b283ca2e 100644 --- a/src/coastseg/coastseg_map.py +++ b/src/coastseg/coastseg_map.py @@ -339,8 +339,8 @@ def load_extracted_shoreline_layer(self, gdf, layer_name, colormap): min_date = projected_gdf["date"].min() max_date = projected_gdf["date"].max() if min_date == max_date: - # If there's only one date, set delta to 0.25 - delta = np.array([0.25]) + # If there's only one date (there can be multiple shorelines per one date), set delta to 0.25 + delta = np.array([0.25] * len(projected_gdf)) else: delta = (projected_gdf["date"] - min_date) / (max_date - min_date) # get the colors from the colormap @@ -475,7 +475,10 @@ def update_extracted_shorelines_display( extracted_shorelines = self.update_loadable_shorelines(selected_id) self.extract_shorelines_container.trash_list = [] # load the new extracted shorelines onto the map - self.load_extracted_shorelines_on_map(extracted_shorelines, 0) + # get the first extracted shoreline in the load_list + + self.load_extracted_shorelines_on_map(extracted_shorelines) + # self.load_extracted_shorelines_on_map(extracted_shorelines, 0) def create_map(self): """create an interactive map object using the map_settings @@ -2414,25 +2417,6 @@ def handle_draw(self, target: DrawControl, action: str, geo_json: dict): if self.draw_control.last_action == "deleted": self.remove_bbox() - def load_extracted_shoreline_by_id(self, selected_id: str, row_number: int = 0): - """ - Loads extracted shorelines onto a map for a single region of interest specified by its ID. - - Args: - selected_id (str): The ID of the region of interest to plot extracted shorelines for. - row_number (int, optional): The row number of the region of interest to plot. Defaults to 0. - """ - # remove any existing extracted shorelines - self.remove_extracted_shoreline_layers() - # get the extracted shorelines for the selected roi - if self.rois is not None: - extracted_shorelines = self.rois.get_extracted_shoreline(selected_id) - # logger.info( - # f"ROI ID { selected_id} extracted shorelines {extracted_shorelines}" - # ) - # if extracted shorelines exist, load them onto map, if none exist nothing loads - self.load_extracted_shorelines_on_map(extracted_shorelines, row_number) - def update_roi_ids_with_shorelines(self) -> list[str]: """ Returns a list of the ROI IDs with extracted shorelines and updates the id_container.ids and the extract_shorelines_container.roi_ids_list with the ROI IDs that have extracted shorelines. @@ -2495,9 +2479,10 @@ def update_loadable_shorelines( lambda x: x.strftime("%Y-%m-%d %H:%M:%S") ) self.extract_shorelines_container.load_list = [] - self.extract_shorelines_container.load_list = ( - extracted_shorelines.gdf["satname"] + "_" + formatted_dates - ).tolist() + + self.extract_shorelines_container.load_list = list( + set((extracted_shorelines.gdf["satname"] + "_" + formatted_dates).tolist()) + ) self.extract_shorelines_container.trash_list = [] else: logger.warning(f"No shorelines extracted for ROI {selected_id}") @@ -2510,10 +2495,10 @@ def update_loadable_shorelines( def load_extracted_shorelines_on_map( self, extracted_shorelines: extracted_shoreline.Extracted_Shoreline, - row_number: int = 0, ): """ Loads a stylized extracted shoreline layer onto a map for a single region of interest. + Loads the shorelines for the first date in the extracted shorelines. Args: extracted_shoreline (Extracted_Shoreline): An instance of the Extracted_Shoreline class containing the extracted shoreline data. @@ -2528,15 +2513,12 @@ def load_extracted_shorelines_on_map( f"No extracted shorelines for ROI {extracted_shorelines.roi_id}" ) return + # get the first date from the extracted shorelines + first_date = extracted_shorelines.gdf.iloc[[0]]["date"].values[0] # check if row number exists in gdf - if row_number >= len(extracted_shorelines.gdf): - logger.warning( - f"Row number {row_number} does not exist in extracted shoreline gdf using row number 0 instead" - ) - row_number = 0 # load the selected extracted shoreline layer onto the map self.load_extracted_shoreline_layer( - extracted_shorelines.gdf.iloc[[row_number]], layer_name, colormap="viridis" + extracted_shorelines.gdf[extracted_shorelines.gdf["date"]==first_date].copy(), layer_name, colormap="viridis" ) def load_feature_on_map( diff --git a/src/coastseg/extracted_shoreline.py b/src/coastseg/extracted_shoreline.py index 8b8810e2..996c1a0d 100644 --- a/src/coastseg/extracted_shoreline.py +++ b/src/coastseg/extracted_shoreline.py @@ -95,6 +95,30 @@ def wrapper(*args, **kwargs): return wrapper +def stringify_datetime_columns(gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame: + """ + Check if any of the columns in a GeoDataFrame have the type pandas timestamp and convert them to string. + + Args: + gdf: A GeoDataFrame. + + Returns: + A new GeoDataFrame with the same data as the original, but with any timestamp columns converted to string. + """ + timestamp_cols = [ + col for col in gdf.columns if pd.api.types.is_datetime64_any_dtype(gdf[col]) + ] + + if not timestamp_cols: + return gdf + + gdf = gdf.copy() + + for col in timestamp_cols: + gdf[col] = gdf[col].astype(str) + + return gdf + def filter_shoreline_new( shoreline, shoreline_extraction_area, @@ -558,12 +582,6 @@ def combine_satellite_data(satellite_data: dict) -> dict: # Fill the satellite_data dict for satname, sat_data in satellite_data.items(): - satellite_data[satname].setdefault("dates", []) - satellite_data[satname].setdefault("geoaccuracy", []) - satellite_data[satname].setdefault("shorelines", []) - satellite_data[satname].setdefault("cloud_cover", []) - satellite_data[satname].setdefault("filename", []) - satellite_data[satname].setdefault("idx", []) satellite_data[satname].setdefault("dates", []) satellite_data[satname].setdefault("geoaccuracy", []) satellite_data[satname].setdefault("shorelines", []) @@ -655,12 +673,11 @@ def smooth_lines(lines:gpd.GeoDataFrame,refinements=5): coords = LineString_to_arr(line.geometry) refined = chaikins_corner_cutting(coords, refinements=refinements) refined_geom = arr_to_LineString(refined) - # new_lines['geometry'][i] = refined_geom new_lines.loc[i,'geometry'] = refined_geom return new_lines def process_shoreline_zoo( - contours, cloud_mask, im_nodata, georef, image_epsg, settings, date, **kwargs + contours, cloud_mask, im_nodata, georef, image_epsg, settings, date,satname:str,**kwargs ): # convert the contours that are currently pixel coordinates to world coordiantes contours_world = SDS_tools.convert_pix2world(contours, georef) @@ -706,6 +723,7 @@ def process_shoreline_zoo( gdf = gpd.GeoDataFrame( { "date": np.tile(date_obj, len(contours_shapely)), # type: ignore + "satname": np.tile(satname, len(contours_shapely)), # type: ignore "cloud_cover": np.tile(cloud_cover, len(contours_shapely)), }, geometry=contours_shapely, @@ -714,13 +732,6 @@ def process_shoreline_zoo( # smooth the shorelines in the GeoDataFrame gdf = smooth_lines(gdf) - - # print( - # os.path.abspath(f"shoreline_{date_obj.strftime('%Y-%m-%d-%H-%M-%S')}.geojson") - # ) - # gdf.to_file( - # f"shoreline_{date_obj.strftime('%Y-%m-%d-%H-%M-%S')}.geojson", driver="GeoJSON" - # ) return gdf def find_shoreline( @@ -734,6 +745,7 @@ def find_shoreline( im_labels: np.ndarray, reference_shoreline_buffer: np.ndarray, date: str, + satname: str, ) -> np.array: """ Finds the shoreline in an image. @@ -763,8 +775,9 @@ def find_shoreline( # contours, cloud_mask_adv, im_nodata, georef, image_epsg, settings # ) shoreline = process_shoreline_zoo( - contours, cloud_mask_adv, im_nodata, georef, image_epsg, settings,date + contours, cloud_mask_adv, im_nodata, georef, image_epsg, settings,date,satname, ) + # this is a geodataframe with the shoreline in it with the date and cloud cover return shoreline def process_satellite( @@ -820,6 +833,8 @@ def process_satellite( # filenames of tifs (ms) for this satellite filenames = metadata[satname]["filenames"] output = {} + gdf_list = [] + all_shorelines_gdf = gpd.GeoDataFrame() output.setdefault(satname, {}) output[satname].setdefault("dates", []) output[satname].setdefault("geoaccuracy", []) @@ -873,7 +888,7 @@ def process_satellite( batch * batch_size, min((batch + 1) * batch_size, len(filenames)) ): image_epsg = metadata[satname]["epsg"][index] - espg_list.append(image_epsg) + # espg_list.append(image_epsg) geoaccuracy_list.append(metadata[satname]["acc_georef"][index]) timestamps.append(metadata[satname]["dates"][index]) tasks.append( @@ -882,6 +897,7 @@ def process_satellite( filepath, settings, satname, + metadata[satname]["dates"][index], collection, image_epsg, pixel_size, @@ -891,6 +907,8 @@ def process_satellite( save_location, settings.get("apply_cloud_mask", True), shoreline_extraction_area, + index = index, + geoaccuracy = metadata[satname]["acc_georef"][index], ) ) @@ -900,21 +918,13 @@ def process_satellite( num_tasks_computed = len(tasks) pbar.update(num_tasks_computed) - for index, result in enumerate(results): - if result is None: - continue - output.setdefault(satname, {}) - output[satname].setdefault("dates", []).append(timestamps[index]) - output[satname].setdefault("geoaccuracy", []).append( - geoaccuracy_list[index] - ) - output[satname].setdefault("shorelines", []).append(result["shorelines"]) - output[satname].setdefault("cloud_cover", []).append(result["cloud_cover"]) - output[satname].setdefault("filename", []).append(filenames[index]) - output[satname].setdefault("idx", []).append(index) - + # merge resulting geodataframes + new_gdf_list = [result for result in results if result is not None and isinstance(result, gpd.GeoDataFrame)] + gdf_list.extend(new_gdf_list) + all_shorelines_gdf = concat_and_sort_geodataframes(gdf_list, "date", "UTC") pbar.close() - return output + # return output + return all_shorelines_gdf def get_cloud_cover_combined(cloud_mask: np.ndarray): @@ -966,12 +976,65 @@ def get_cloud_cover(cloud_mask: np.ndarray, im_nodata: np.ndarray) -> float: return cloud_cover +def concat_and_sort_geodataframes( + gdfs: list[gpd.GeoDataFrame], date_column: str, timezone: str = "UTC" +) -> gpd.GeoDataFrame: + """ + Concatenates a list of GeoDataFrames with the same columns into a single GeoDataFrame and sorts by a date column. + + Args: + gdfs (list[gpd.GeoDataFrame]): List of GeoDataFrames to concatenate. + date_column (str): The name of the date column to sort by. + timezone (str): The timezone to which naive datetime entries should be localized. Default is 'UTC'. + + Returns: + gpd.GeoDataFrame: A single concatenated and sorted GeoDataFrame. + """ + concatenated_gdf = pd.concat(gdfs, ignore_index=True) + concatenated_gdf = gpd.GeoDataFrame(concatenated_gdf) + print(f"concatenated_gdf[date_column]: {concatenated_gdf[date_column]}") + + # Ensure the date column is in datetime format and remove any NaT values + concatenated_gdf[date_column] = pd.to_datetime( + concatenated_gdf[date_column], errors="coerce" + ) + concatenated_gdf = concatenated_gdf.dropna(subset=[date_column]) + print(f"concatenated_gdf[date_column].to_datetime: {concatenated_gdf[date_column]}") + tz = pytz.timezone(timezone) + + # Localize timezone-naive datetimes to the specified timezone + concatenated_gdf[date_column] = concatenated_gdf[date_column].apply( + lambda x: x.tz_localize('UTC').tz_convert(timezone) if x.tzinfo is None else x.tz_convert(timezone) + ) + # Define timezone-aware min and max dates + min_date = pd.Timestamp.min.tz_localize('UTC').tz_convert(tz) + max_date = pd.Timestamp.max.tz_localize('UTC').tz_convert(tz) + + print(f"min_date: {min_date}") + print(f"max_date: {max_date}") + + # Filter out-of-bounds datetime values + concatenated_gdf = concatenated_gdf[ + (concatenated_gdf[date_column] > min_date) + & (concatenated_gdf[date_column] < max_date) + ] + + sorted_gdf = concatenated_gdf.sort_values(by=date_column).reset_index(drop=True) + + print(sorted_gdf.columns) + print(f"concatenated_gdf[date_column] after sorting: {sorted_gdf[date_column]}") + # Format the date column to the desired string format + sorted_gdf[date_column] = sorted_gdf[date_column].dt.strftime('%Y-%m-%d %H:%M:%S') + + + return sorted_gdf def process_satellite_image( filename: str, filepath: str, settings: Dict[str, Dict[str, Union[str, int, float]]], satname: str, + date:str, collection: str, image_epsg: int, pixel_size: float, @@ -981,7 +1044,9 @@ def process_satellite_image( save_location: str = "", apply_cloud_mask: bool = True, shoreline_extraction_area : gpd.GeoDataFrame = None, -) -> Dict[str, Union[np.ndarray, float]]: + index: int = None, + geoaccuracy: str = None, +) -> gpd.GeoDataFrame: """ Processes a single satellite image to extract the shoreline. @@ -1078,6 +1143,7 @@ def process_satellite_image( land_mask, ref_shoreline_buffer, date = date, + satname=satname, ) if shoreline is None: logger.warning(f"\nShoreline not found for {fn}") @@ -1118,12 +1184,10 @@ def process_satellite_image( ref_shoreline_buffer, shoreline_extraction_area=shoreline_extraction_area_array, ) - # create dictionary of output - output = { - "shorelines": shoreline_array, - "cloud_cover": cloud_cover, - } - return output + shoreline["filename"] = np.tile(filename, len(shoreline)) + shoreline["idx"] = np.tile(index, len(shoreline)) + shoreline["geoaccuracy"] = np.tile(geoaccuracy, len(shoreline)) + return shoreline def get_model_card_classes(model_card_path: str) -> dict: @@ -1727,48 +1791,34 @@ def simplified_find_contours( return processed_contours -# def find_shoreline( -# filename: str, -# image_epsg: int, -# settings: dict, -# cloud_mask_adv: np.ndarray, -# cloud_mask: np.ndarray, -# im_nodata: np.ndarray, -# georef: float, -# im_labels: np.ndarray, -# reference_shoreline_buffer: np.ndarray, -# ) -> np.array: -# """ -# Finds the shoreline in an image. - -# Args: -# fn (str): The filename of the image. -# image_epsg (int): The EPSG code of the image. -# settings (dict): A dictionary containing settings for the shoreline extraction. -# cloud_mask_adv (numpy.ndarray): A binary mask indicating advanced cloud cover in the image. -# cloud_mask (numpy.ndarray): A binary mask indicating cloud cover in the image. -# im_nodata (numpy.ndarray): A binary mask indicating no data pixels in the image. -# georef (flat): A the georeference code for the image. -# im_labels (numpy.ndarray): A labeled array indicating the water and land pixels in the image. -# reference_shoreline_buffer (numpy.ndarray,): A buffer around the reference shoreline. - -# Returns: -# numpy.ndarray or None: The shoreline as a numpy array, or None if the shoreline could not be found. -# """ - -# try: -# contours = simplified_find_contours( -# im_labels, cloud_mask, reference_shoreline_buffer -# ) -# except Exception as e: -# logger.error(f"{e}\nCould not map shoreline for this image: {filename}") -# return None -# # print(f"Settings used by process_shoreline: {settings}") -# # process the water contours into a shoreline -# shoreline = SDS_shoreline.process_shoreline( -# contours, cloud_mask_adv, im_nodata, georef, image_epsg, settings -# ) -# return shoreline +def convert_date_column_to_datetime( + gdf: gpd.GeoDataFrame, date_column: str, timezone: str = 'UTC' +) -> gpd.GeoDataFrame: + """ + Converts the date column of a GeoDataFrame to datetime format with timezone information and converts to datetime.datetime in UTC. + + Args: + gdf (gpd.GeoDataFrame): The GeoDataFrame containing the date column. + date_column (str): The name of the date column to convert. + timezone (str): The timezone to which naive datetime entries should be localized. Default is 'UTC'. + + Returns: + gpd.GeoDataFrame: The updated GeoDataFrame with the date column in datetime format with timezone. + """ + # Ensure the date column is in datetime format + gdf[date_column] = pd.to_datetime(gdf[date_column], errors="coerce") + + # Drop any rows where the date is NaT + gdf = gdf.dropna(subset=[date_column]) + + # Convert the date column to string format + gdf[date_column] = gdf[date_column].dt.strftime('%Y-%m-%d %H:%M:%S') + + # Convert the date column back to datetime in UTC + gdf[date_column] = pd.to_datetime(gdf[date_column], format='%Y-%m-%d %H:%M:%S', errors='coerce').dt.tz_localize('UTC') + + return gdf + @time_func @@ -1837,9 +1887,18 @@ def extract_shorelines_with_dask( f"edit_metadata metadata['{satname}'] length {len(metadata[satname].get('im_quality',[]))} of im_quality: {np.unique(metadata[satname].get('im_quality',[]))}" ) - shoreline_dict = {} + shoreline_dict = { + "dates": [], + "shorelines": [], + "cloud_cover": [], + "geoaccuracy": [], + "idx": [], + "filename": [], + "satname": [], + } + all_satellite_gdfs = [] for satname in metadata.keys(): - satellite_dict = process_satellite( + satellite_gdf = process_satellite( satname, settings, metadata, @@ -1851,36 +1910,57 @@ def extract_shorelines_with_dask( shoreline_extraction_area=shoreline_extraction_area, **kwargs, ) - if not satellite_dict: - shoreline_dict[satname] = {} - elif not satname in satellite_dict.keys(): - shoreline_dict[satname] = {} - else: - shoreline_dict[satname] = satellite_dict[satname] + if satellite_gdf is not None: + all_satellite_gdfs.append(satellite_gdf) - for satname in shoreline_dict.keys(): - # Check and log 'reference shoreline' if it exists - ref_sl = shoreline_dict[satname].get("shorelines", np.array([])) - if isinstance(ref_sl, np.ndarray): - logger.info(f"shorelines.shape: {ref_sl.shape}") - logger.info(f"Number of 'shorelines' for {satname}: {len(ref_sl)}") - if shoreline_dict[satname] == {}: - logger.info(f"No shorelines found for {satname}") - else: - logger.info( - f"result_dict['{satname}'] length {len(shoreline_dict[satname].get('dates',[]))} of dates[:3] {list(islice(shoreline_dict[satname].get('dates',[]),3))}" - ) - logger.info( - f"result_dict['{satname}'] length {len(shoreline_dict[satname].get('geoaccuracy',[]))} of geoaccuracy: {np.unique(shoreline_dict[satname].get('geoaccuracy',[]))}" - ) - logger.info( - f"result_dict['{satname}'] length {len(shoreline_dict[satname].get('cloud_cover',[]))} of cloud_cover: {np.unique(shoreline_dict[satname].get('cloud_cover',[]))}" - ) - logger.info( - f"result_dict['{satname}'] length {len(shoreline_dict[satname].get('filename',[]))} of filename[:3]{list(islice(shoreline_dict[satname].get('filename',[]),3))}" - ) # combine the extracted shorelines for each satellite - return combine_satellite_data(shoreline_dict) + all_shorelines_gdf = concat_and_sort_geodataframes(all_satellite_gdfs, "date", "UTC") + + all_shorelines_gdf = all_shorelines_gdf.reset_index(drop=True) + # convert to epsg 4326 + all_shorelines_gdf_4326 = all_shorelines_gdf.to_crs(epsg=4326) + # drop the filename column + all_shorelines_gdf_4326.drop(columns=["filename"],inplace=True) + + print(f"all_shorelines_gdf_4326: {all_shorelines_gdf_4326}") + if all_shorelines_gdf_4326.empty: + print("No shorelines were extracted.") + logger.warning("No shorelines were extracted.") + return {} + # Save extracted shorelines to GeoJSON files + all_shorelines_gdf_4326.to_file( + os.path.join(session_path, 'extracted_shorelines_lines.geojson'), driver="GeoJSON" + ) + + print(f"extracted_shorelines_lines.geojson saved to {os.path.join(session_path, 'extracted_shorelines_lines.geojson')}") + + # convert linestrings to multipoints + points_gdf = convert_linestrings_to_multipoints(all_shorelines_gdf_4326) + projected_gdf = stringify_datetime_columns(points_gdf) + # Save extracted shorelines as a GeoJSON file + projected_gdf.to_file( + os.path.join(session_path, 'extracted_shorelines_points.geojson'), driver="GeoJSON" + ) + + print(f"extracted_shorelines_points.geojson saved to {os.path.join(session_path, 'extracted_shorelines_points.geojson')}") + + # convert the extracted shorelines dates to ISO 8601 format + all_shorelines_gdf = convert_date_column_to_datetime(all_shorelines_gdf, 'date') + # create a dictionary of the extracted shorelines + for date, group in all_shorelines_gdf.groupby("date"): + print(f"Processing date: {date}") + shorelines = [np.array(geom.coords) for geom in group.geometry] + contours_array = extract_contours(shorelines) + shoreline_dict["shorelines"].append(contours_array) + shoreline_dict["dates"].append(date.to_pydatetime()) + # Append values for each group, ensuring they are correctly extracted + shoreline_dict["cloud_cover"].append(group["cloud_cover"].values[0]) + shoreline_dict["geoaccuracy"].append(group["geoaccuracy"].values[0]) + shoreline_dict["idx"].append(group["idx"].values[0]) + shoreline_dict["filename"].append(group["filename"].values[0]) + shoreline_dict["satname"].append(group["satname"].values[0]) + + return shoreline_dict def get_sorted_model_outputs_directory( @@ -2468,10 +2548,10 @@ def create_extracted_shorelines_from_session( logger.warning(f"No extracted shorelines for ROI {roi_id}") raise exceptions.No_Extracted_Shoreline(roi_id) - # extracted shorelines have map crs so they can be displayed on the map - self.gdf = self.create_geodataframe( - self.shoreline_settings["output_epsg"], output_crs="EPSG:4326" - ) + # # extracted shorelines have map crs so they can be displayed on the map + # self.gdf = self.create_geodataframe( + # self.shoreline_settings["output_epsg"], output_crs="EPSG:4326" + # ) return self def _validate_input_params( diff --git a/src/coastseg/filters.py b/src/coastseg/filters.py index 070566a9..6453f188 100644 --- a/src/coastseg/filters.py +++ b/src/coastseg/filters.py @@ -259,16 +259,6 @@ def filter_model_outputs( # get the parent directory of good dir parent_dir = os.path.abspath(pathlib.Path(dest_folder_good).parent) - # check if a file called model_settings.json exists in the parent directory - settings_file = os.path.join(parent_dir, "model_settings.json") - if os.path.exists(settings_file): - import json - with open(settings_file) as f: - settings = json.load(f) - # add the model score to the settings - # drop any NaN values from the scores - settings["model_scores"] = scores[~np.isnan(scores)].tolist() - files_bad, files_good = get_good_bad_files(valid_files, labels, scores) handle_files_and_directories( files_bad, files_good, dest_folder_bad, dest_folder_good diff --git a/src/coastseg/watchable_slider.py b/src/coastseg/watchable_slider.py deleted file mode 100644 index 64fac44b..00000000 --- a/src/coastseg/watchable_slider.py +++ /dev/null @@ -1,131 +0,0 @@ -from typing import Callable -import logging - -import ipywidgets -from ipywidgets import Layout - - -logger = logging.getLogger(__name__) - -""" -This class is a widget that allows the user to load extracted shorelines on the map. -""" - - -# write docstring for this class -class Extracted_Shoreline_widget(ipywidgets.VBox): - def __init__(self, map_interface=None): - # map interface that has extracted shorelines - self.map_interface = map_interface - self.map_interface.extract_shorelines_container.observe( - self.update_satname_widget, names="satname" - ) - self.map_interface.extract_shorelines_container.observe( - self.update_date_widget, names="date" - ) - - self.satellite_html = ipywidgets.HTML( - value=f"Satellite: {self.map_interface.extract_shorelines_container.satname}" - ) - self.date_html = ipywidgets.HTML( - value=f"Date: {self.map_interface.extract_shorelines_container.date}" - ) - title_html = ipywidgets.HTML( - value="

Load Extracted Shorelines

", layout=Layout(padding="0px") - ) - - self.create_dropdown() - self.create_slider() - - self.load_extracted_shorelines_button = ipywidgets.Button( - description="Load Shorelines" - ) - - # list of objects to watch - self._observables = [] - # Roi information bar - roi_info_row = ipywidgets.HBox([self.satellite_html, self.date_html]) - super().__init__( - [ - title_html, - self.dropdown, - self.slider, - ipywidgets.HTML(value="Extracted Shoreline Information: "), - roi_info_row, - ] - ) - - def update_satname_widget(self, change): - self.satellite_html.value = f"Satellite: {change['new']}" - - def update_date_widget(self, change): - self.date_html.value = f"Date: {change['new']}" - - def create_slider(self): - self.slider = ipywidgets.IntSlider( - value=self.map_interface.extract_shorelines_container.max_shorelines, - min=0, - max=1, - step=1, - description="Shoreline:", - disabled=True, - continuous_update=False, # only load in new value when slider is released - orientation="horizontal", - ) - - # Function to update widget options when the traitlet changes - def update_extracted_shoreline_slider(change): - self.slider.max = change["new"] - if change["new"] > 0: - self.slider.disabled = False - else: - self.slider.disabled = True - - # When the traitlet,id_container, trait 'max_shorelines' changes the update_extracted_shoreline_slider will be updated - self.map_interface.extract_shorelines_container.observe( - update_extracted_shoreline_slider, names="max_shorelines" - ) - self.slider.observe(self.on_slider_change, names="value") - - def create_dropdown(self): - self.dropdown = ipywidgets.Dropdown( - options=self.map_interface.id_container.ids, - description="Select ROI:", - style={"description_width": "initial"}, - ) - - # Function to update widget options when the traitlet changes - def update_select_roi_dropdown(change): - self.dropdown.options = change["new"] - - # When the traitlet,id_container, trait 'ids' changes the update_select_roi_dropdown will be updated - self.map_interface.id_container.observe(update_select_roi_dropdown, names="ids") - self.dropdown.observe(self.on_dropdown_change, names="value") - - def set_load_extracted_shorelines_button_on_click(self, on_click: Callable): - self.load_extracted_shorelines_button.on_click(lambda button: on_click()) - - def on_slider_change(self, change): - # get the row number from the extracted_shoreline_slider - row_number = change["new"] - # get the extracted shoreline by the row number from the map_interface - roi_id = self.dropdown.value - self.map_interface.load_extracted_shoreline_by_id(roi_id, row_number=row_number) - - def on_dropdown_change(self, change: dict): - """When the ROI ID in the dropdown changes load the - first extracted shoreline available. - - Args: - change (dict): a change dictionary containing the new change under the key ['new']. - change["new"] will be an string ROI_ID - """ - roi_id = change["new"] - # get the extracted shoreline by the row number from the map_interface - self.map_interface.load_extracted_shoreline_by_id(roi_id, row_number=0) - - def set_satellite_html(self, satellite: str): - self.satellite_html.value = f"Satellite: {satellite} " - - def set_date_html(self, date: str): - self.date_html.value = f"Date: {date} "