forked from lancertech6/Hactober2022
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfleury_algorithm.py
119 lines (95 loc) · 3.37 KB
/
fleury_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Python program print Eulerian Trail in a given Eulerian or Semi-Eulerian Graph
from collections import defaultdict
# This class represents an undirected graph using adjacency list representation
class Graph:
def __init__(self, vertices):
self.V = vertices # No. of vertices
self.graph = defaultdict(list) # default dictionary to store graph
self.Time = 0
# function to add an edge to graph
def addEdge(self, u, v):
self.graph[u].append(v)
self.graph[v].append(u)
# This function removes edge u-v from graph
def rmvEdge(self, u, v):
for index, key in enumerate(self.graph[u]):
if key == v:
self.graph[u].pop(index)
for index, key in enumerate(self.graph[v]):
if key == u:
self.graph[v].pop(index)
# A DFS based function to count reachable vertices from v
def DFSCount(self, v, visited):
count = 1
visited[v] = True
for i in self.graph[v]:
if visited[i] == False:
count = count + self.DFSCount(i, visited)
return count
# The function to check if edge u-v can be considered as next edge in
# Euler Tour
def isValidNextEdge(self, u, v):
# The edge u-v is valid in one of the following two cases:
# 1) If v is the only adjacent vertex of u
if len(self.graph[u]) == 1:
return True
else:
'''
2) If there are multiple adjacents, then u-v is not a bridge
Do following steps to check if u-v is a bridge
2.a) count of vertices reachable from u'''
visited = [False]*(self.V)
count1 = self.DFSCount(u, visited)
'''2.b) Remove edge (u, v) and after removing the edge, count
vertices reachable from u'''
self.rmvEdge(u, v)
visited = [False]*(self.V)
count2 = self.DFSCount(u, visited)
# 2.c) Add the edge back to the graph
self.addEdge(u, v)
# 2.d) If count1 is greater, then edge (u, v) is a bridge
return False if count1 > count2 else True
# Print Euler tour starting from vertex u
def printEulerUtil(self, u):
# Recur for all the vertices adjacent to this vertex
for v in self.graph[u]:
# If edge u-v is not removed and it's a a valid next edge
if self.isValidNextEdge(u, v):
print("%d-%d " % (u, v)),
self.rmvEdge(u, v)
self.printEulerUtil(v)
'''The main function that print Eulerian Trail. It first finds an odd
degree vertex (if there is any) and then calls printEulerUtil()
to print the path '''
def printEulerTour(self):
# Find a vertex with odd degree
u = 0
for i in range(self.V):
if len(self.graph[i]) % 2 != 0:
u = i
break
# Print tour starting from odd vertex
print("\n")
self.printEulerUtil(u)
# Create a graph given in the above diagram
g1 = Graph(4)
g1.addEdge(0, 1)
g1.addEdge(0, 2)
g1.addEdge(1, 2)
g1.addEdge(2, 3)
g1.printEulerTour()
g2 = Graph(3)
g2.addEdge(0, 1)
g2.addEdge(1, 2)
g2.addEdge(2, 0)
g2.printEulerTour()
g3 = Graph(5)
g3.addEdge(1, 0)
g3.addEdge(0, 2)
g3.addEdge(2, 1)
g3.addEdge(0, 3)
g3.addEdge(3, 4)
g3.addEdge(3, 2)
g3.addEdge(3, 1)
g3.addEdge(2, 4)
g3.printEulerTour()