forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MaxHeap.js
85 lines (72 loc) · 1.74 KB
/
MaxHeap.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/**
* Author: Samarth Jain
* Max Heap implementation in Javascript
*/
class BinaryHeap {
constructor () {
this.heap = []
}
insert (value) {
this.heap.push(value)
this.heapify()
}
size () {
return this.heap.length
}
empty () {
return this.size() === 0
}
// using iterative approach to reorder the heap after insertion
heapify () {
let index = this.size() - 1
while (index > 0) {
const element = this.heap[index]
const parentIndex = Math.floor((index - 1) / 2)
const parent = this.heap[parentIndex]
if (parent[0] >= element[0]) break
this.heap[index] = parent
this.heap[parentIndex] = element
index = parentIndex
}
}
// Extracting the maximum element from the Heap
extractMax () {
const max = this.heap[0]
const tmp = this.heap.pop()
if (!this.empty()) {
this.heap[0] = tmp
this.sinkDown(0)
}
return max
}
// To restore the balance of the heap after extraction.
sinkDown (index) {
const left = 2 * index + 1
const right = 2 * index + 2
let largest = index
const length = this.size()
if (left < length && this.heap[left][0] > this.heap[largest][0]) {
largest = left
}
if (right < length && this.heap[right][0] > this.heap[largest][0]) {
largest = right
}
// swap
if (largest !== index) {
const tmp = this.heap[largest]
this.heap[largest] = this.heap[index]
this.heap[index] = tmp
this.sinkDown(largest)
}
}
}
// Example
// const maxHeap = new BinaryHeap()
// maxHeap.insert([4])
// maxHeap.insert([3])
// maxHeap.insert([6])
// maxHeap.insert([1])
// maxHeap.insert([8])
// maxHeap.insert([2])
// const mx = maxHeap.extractMax()
export { BinaryHeap }