From 4951fa6e6fea2c587d656a0b42c2cf347011f1ab Mon Sep 17 00:00:00 2001 From: Avik Pal Date: Fri, 22 Sep 2023 22:46:39 -0400 Subject: [PATCH] Port shooting tests from NeuralBVP --- test/shooting/shooting_tests.jl | 332 ++++++++++++++++++++++++-------- 1 file changed, 249 insertions(+), 83 deletions(-) diff --git a/test/shooting/shooting_tests.jl b/test/shooting/shooting_tests.jl index 114846da..f2b5be33 100644 --- a/test/shooting/shooting_tests.jl +++ b/test/shooting/shooting_tests.jl @@ -1,106 +1,272 @@ using BoundaryValueDiffEq, LinearAlgebra, OrdinaryDiffEq, Test -@info "Shooting method" +@testset "Basic Shooting Tests" begin + SOLVERS = [Shooting(Tsit5()), MultipleShooting(10, Tsit5())] -SOLVERS = [Shooting(Tsit5()), MultipleShooting(10, Tsit5())] + tspan = (0.0, 100.0) + u0 = [0.0, 1.0] -@info "Multi-Point BVProblem" # Not really but using that API + # Inplace + function f1!(du, u, p, t) + du[1] = u[2] + du[2] = -u[1] + return nothing + end -tspan = (0.0, 100.0) -u0 = [0.0, 1.0] + function bc1!(resid, sol, p, t) + t₀, t₁ = first(t), last(t) + resid[1] = sol(t₀)[1] + resid[2] = sol(t₁)[1] - 1 + return nothing + end -# Inplace -function f1!(du, u, p, t) - du[1] = u[2] - du[2] = -u[1] - return nothing -end + bvp1 = BVProblem(f1!, bc1!, u0, tspan) + @test SciMLBase.isinplace(bvp1) + for solver in SOLVERS + resid_f = Array{Float64}(undef, 2) + sol = solve(bvp1, solver; abstol = 1e-6, reltol = 1e-6) + @test SciMLBase.successful_retcode(sol) + bc1!(resid_f, sol, nothing, sol.t) + @test norm(resid_f) < 1e-6 + end -function bc1!(resid, sol, p, t) - t₀, t₁ = first(t), last(t) - resid[1] = sol(t₀)[1] - resid[2] = sol(t₁)[1] - 1 - return nothing -end + # Out of Place + f1(u, p, t) = [u[2], -u[1]] -bvp1 = BVProblem(f1!, bc1!, u0, tspan) -@test SciMLBase.isinplace(bvp1) -for solver in SOLVERS - resid_f = Array{Float64}(undef, 2) - sol = solve(bvp1, solver; abstol = 1e-6, reltol = 1e-6) - @test SciMLBase.successful_retcode(sol) - bc1!(resid_f, sol, nothing, sol.t) - @test norm(resid_f) < 1e-6 -end + function bc1(sol, p, t) + t₀, t₁ = first(t), last(t) + return [sol(t₀)[1], sol(t₁)[1] - 1] + end -# Out of Place -f1(u, p, t) = [u[2], -u[1]] + @test_throws SciMLBase.NonconformingFunctionsError BVProblem(f1!, bc1, u0, tspan) + @test_throws SciMLBase.NonconformingFunctionsError BVProblem(f1, bc1!, u0, tspan) -function bc1(sol, p, t) - t₀, t₁ = first(t), last(t) - return [sol(t₀)[1], sol(t₁)[1] - 1] -end + bvp2 = BVProblem(f1, bc1, u0, tspan) + @test !SciMLBase.isinplace(bvp2) + for solver in SOLVERS + sol = solve(bvp2, solver; abstol = 1e-6, reltol = 1e-6) + @test SciMLBase.successful_retcode(sol) + resid_f = bc1(sol, nothing, sol.t) + @test norm(resid_f) < 1e-6 + end -@test_throws SciMLBase.NonconformingFunctionsError BVProblem(f1!, bc1, u0, tspan) -@test_throws SciMLBase.NonconformingFunctionsError BVProblem(f1, bc1!, u0, tspan) + # Inplace + function bc2!((resida, residb), (ua, ub), p) + resida[1] = ua[1] + residb[1] = ub[1] - 1 + return nothing + end -bvp2 = BVProblem(f1, bc1, u0, tspan) -@test !SciMLBase.isinplace(bvp2) -for solver in SOLVERS - sol = solve(bvp2, solver; abstol = 1e-6, reltol = 1e-6) - @test SciMLBase.successful_retcode(sol) - resid_f = bc1(sol, nothing, sol.t) - @test norm(resid_f) < 1e-6 -end + bvp3 = TwoPointBVProblem(f1!, bc2!, u0, tspan; + bcresid_prototype = (Array{Float64}(undef, 1), Array{Float64}(undef, 1))) + @test SciMLBase.isinplace(bvp3) + for solver in SOLVERS + sol = solve(bvp3, solver; abstol = 1e-6, reltol = 1e-6) + @test SciMLBase.successful_retcode(sol) + resid_f = (Array{Float64, 1}(undef, 1), Array{Float64, 1}(undef, 1)) + bc2!(resid_f, (sol(tspan[1]), sol(tspan[2])), nothing) + if solver isa Shooting + @test_broken norm(resid_f) < 1e-6 + @test norm(resid_f) < 1e-4 + else + @test norm(resid_f) < 1e-6 + end + end -@info "Two Point BVProblem" # Not really but using that API + # Out of Place + function bc2((ua, ub), p) + return ([ua[1]], [ub[1] - 1]) + end -# Inplace -function bc2!((resida, residb), (ua, ub), p) - resida[1] = ua[1] - residb[1] = ub[1] - 1 - return nothing + bvp4 = TwoPointBVProblem(f1, bc2, u0, tspan) + @test !SciMLBase.isinplace(bvp4) + for solver in SOLVERS + sol = solve(bvp4, solver; abstol = 1e-6, reltol = 1e-6) + @test SciMLBase.successful_retcode(sol) + resid_f = reduce(vcat, bc2((sol(tspan[1]), sol(tspan[2])), nothing)) + @test norm(resid_f) < 1e-6 + end end -bvp3 = TwoPointBVProblem(f1!, bc2!, u0, tspan; - bcresid_prototype = (Array{Float64}(undef, 1), Array{Float64}(undef, 1))) -@test SciMLBase.isinplace(bvp3) -for solver in SOLVERS - sol = solve(bvp3, solver; abstol = 1e-6, reltol = 1e-6) - @test SciMLBase.successful_retcode(sol) - resid_f = (Array{Float64, 1}(undef, 1), Array{Float64, 1}(undef, 1)) - bc2!(resid_f, (sol(tspan[1]), sol(tspan[2])), nothing) - if solver isa Shooting - @test_broken norm(resid_f) < 1e-6 - @test norm(resid_f) < 1e-4 - else +@testset "Shooting with Complex Values" begin + # Test for complex values + u0 = [0.0, 1.0] .+ 1im + bvp = BVProblem(f1!, bc1!, u0, tspan) + resid_f = Array{ComplexF64}(undef, 2) + + nlsolve = NewtonRaphson(; autodiff = AutoFiniteDiff()) + for solver in [Shooting(Tsit5(); nlsolve), MultipleShooting(10, Tsit5(); nlsolve)] + sol = solve(bvp, solver; abstol = 1e-6, reltol = 1e-6) + @test SciMLBase.successful_retcode(sol) + bc1!(resid_f, sol, nothing, sol.t) @test norm(resid_f) < 1e-6 end end -# Out of Place -function bc2((ua, ub), p) - return ([ua[1]], [ub[1] - 1]) -end +@testset "Flow In a Channel" begin + function flow_in_a_channel!(du, u, p, t) + R, P = p + A, f′′, f′, f, h′, h, θ′, θ = u + du[1] = 0 + du[2] = R * (f′^2 - f * f′′) - R * A + du[3] = f′′ + du[4] = f′ + du[5] = -R * f * h′ - 1 + du[6] = h′ + du[7] = -P * f * θ′ + du[8] = θ′ + end -bvp4 = TwoPointBVProblem(f1, bc2, u0, tspan) -@test !SciMLBase.isinplace(bvp4) -for solver in SOLVERS - sol = solve(bvp4, solver; abstol = 1e-6, reltol = 1e-6) - @test SciMLBase.successful_retcode(sol) - resid_f = reduce(vcat, bc2((sol(tspan[1]), sol(tspan[2])), nothing)) - @test norm(resid_f) < 1e-6 -end + function bc_flow!(resid, sol, p, tspan) + t₁, t₂ = extrema(tspan) + solₜ₁ = sol(t₁) + solₜ₂ = sol(t₂) + resid[1] = solₜ₁[4] + resid[2] = solₜ₁[3] + resid[3] = solₜ₂[4] - 1 + resid[4] = solₜ₂[3] + resid[5] = solₜ₁[6] + resid[6] = solₜ₂[6] + resid[7] = solₜ₁[8] + resid[8] = solₜ₂[8] - 1 + end + + tspan = (0.0, 1.0) + p = [10.0, 7.0] + u0 = zeros(8) + + flow_bvp = BVProblem{true}(flow_in_a_channel!, bc_flow!, u0, tspan, p) + + sol_shooting = solve(flow_bvp, + Shooting(AutoTsit5(Rosenbrock23()), NewtonRaphson()); + maxiters = 100) + @test SciMLBase.successful_retcode(sol_shooting) + + resid = zeros(8) + bc_flow!(resid, sol_shooting, p, sol_shooting.t) + @test norm(resid, Inf) < 1e-6 + + sol_msshooting = solve(flow_bvp, + MultipleShooting(10, AutoTsit5(Rosenbrock23()); nlsolve = NewtonRaphson()); + maxiters = 100) + @test SciMLBase.successful_retcode(sol_msshooting) -#Test for complex values -u0 = [0.0, 1.0] .+ 1im -bvp = BVProblem(f1!, bc1!, u0, tspan) -resid_f = Array{ComplexF64}(undef, 2) - -nlsolve = NewtonRaphson(; autodiff = AutoFiniteDiff()) -for solver in [Shooting(Tsit5(); nlsolve), MultipleShooting(10, Tsit5(); nlsolve)] - sol = solve(bvp, solver; abstol = 1e-6, reltol = 1e-6) - @test SciMLBase.successful_retcode(sol) - bc1!(resid_f, sol, nothing, sol.t) - @test norm(resid_f) < 1e-6 + resid = zeros(8) + bc_flow!(resid, sol_msshooting, p, sol_msshooting.t) + @test norm(resid, Inf) < 1e-6 end + +@testset "Ray Tracing BVP" begin + # Example 1.7 from + # "Numerical Solution to Boundary Value Problems for Ordinary Differential equations", + # 'Ascher, Mattheij, Russell' + + # Earthquake happens at known position (x0, y0, z0) + # Earthquake is detected by seismograph at (xi, yi, zi) + + # Find the path taken by the first ray that reached seismograph. + # i.e. given some velocity field finds the quickest path from + # (x0,y0,z0) to (xi, yi, zi) + + # du = [dx, dy, dz, dξ, dη, dζ, dT, dS] + # du = [x, y, z, ξ, η, ζ, T, S] + # p = [ν(x,y,z), μ_x(x,y,z), μ_y(x,y,z), μ_z(x,y,z)] + @inline v(x, y, z, p) = 1 / (4 + cos(p[1] * x) + sin(p[2] * y) - cos(p[3] * z)) + @inline ux(x, y, z, p) = -p[1] * sin(p[1] * x) + @inline uy(x, y, z, p) = p[2] * cos(p[2] * y) + @inline uz(x, y, z, p) = p[3] * sin(p[3] * z) + + function ray_tracing(u, p, t) + du = similar(u) + ray_tracing!(du, u, p, t) + return du + end + + function ray_tracing!(du, u, p, t) + x, y, z, ξ, η, ζ, T, S = u + + nu = v(x, y, z, p) # Velocity of a sound wave, function of space; + μx = ux(x, y, z, p) # ∂(slowness)/∂x, function of space + μy = uy(x, y, z, p) # ∂(slowness)/∂y, function of space + μz = uz(x, y, z, p) # ∂(slowness)/∂z, function of space + + du[1] = S * nu * ξ + du[2] = S * nu * η + du[3] = S * nu * ζ + + du[4] = S * μx + du[5] = S * μy + du[6] = S * μz + + du[7] = S / nu + du[8] = 0 + + return nothing + end + + function ray_tracing_bc(sol, p, t) + res = similar(first(sol)) + ray_tracing_bc!(res, sol, p, t) + return res + end + + function ray_tracing_bc!(res, sol, p, t) + ua = sol(0.0) + ub = sol(1.0) + nu = v(ua[1], ua[2], ua[3], p) # Velocity of a sound wave, function of space; + + res[1] = ua[1] - x0 + res[2] = ua[2] - y0 + res[3] = ua[3] - z0 + res[4] = ua[7] # T(0) = 0 + res[5] = ua[4]^2 + ua[5]^2 + ua[6]^2 - 1 / nu^2 + res[6] = ub[1] - xi + res[7] = ub[2] - yi + res[8] = ub[3] - zi + return nothing + end + + a = 0 + b = 1 + c = 2 + x0 = 0 + y0 = 0 + z0 = 0 + xi = 4 + yi = 3 + zi = 2.0 + p = [a, b, c, x0, y0, z0, xi, yi, zi] + + dx = xi - x0 + dy = yi - y0 + dz = zi - z0 + + u0 = zeros(8) + u0[1:3] .= 0 # position + u0[4] = dx / v(x0, y0, z0, p) + u0[5] = dy / v(x0, y0, z0, p) + u0[6] = dz / v(x0, y0, z0, p) + u0[8] = 1 + + tspan = (0.0, 1.0) + + prob_oop = BVProblem{false}(ray_tracing, ray_tracing_bc, u0, tspan, p) + alg = MultipleShooting(16, AutoVern7(Rodas4P()); nlsolve = NewtonRaphson(), + grid_coarsening = Base.Fix2(div, 3)) + + sol = solve(prob_oop, alg; reltol = 1e-6, abstol = 1e-6) + @test SciMLBase.successful_retcode(sol.retcode) + resid = zeros(8) + ray_tracing_bc!(resid, sol, p, sol.t) + @test norm(resid, Inf) < 1e-6 + + prob_iip = BVProblem{true}(ray_tracing!, ray_tracing_bc!, u0, tspan, p) + alg = MultipleShooting(16, AutoVern7(Rodas4P()); nlsolve = NewtonRaphson(), + grid_coarsening = Base.Fix2(div, 3)) + + sol = solve(prob_iip, alg; reltol = 1e-6, abstol = 1e-6) + @test SciMLBase.successful_retcode(sol.retcode) + resid = zeros(8) + ray_tracing_bc!(resid, sol, p, sol.t) + @test norm(resid, Inf) < 1e-6 +end \ No newline at end of file