diff --git a/docs/src/model_simulation/ode_simulation_performance.md b/docs/src/model_simulation/ode_simulation_performance.md index 187b40dbd7..9e546a5732 100644 --- a/docs/src/model_simulation/ode_simulation_performance.md +++ b/docs/src/model_simulation/ode_simulation_performance.md @@ -71,7 +71,7 @@ solve(oprob, Tsit5()) nothing # hide ``` If no solver argument is provided to `solve`, and the `OrdinaryDiffEqDefault` sub-library or meta `OrdinaryDiffEq` library are loaded, then one is automatically selected: -```@example +```@example ode_simulation_performance_2 using OrdinaryDiffEqDefault solve(oprob) nothing # hide @@ -136,7 +136,7 @@ nothing # hide ### [Linear solver selection](@id ode_simulation_performance_symbolic_jacobian_linear_solver) When implicit solvers use e.g. the Newton-Raphson method to (at each simulation time step) solve a (typically non-linear) equation, they actually solve a linearised version of this equation. For this, they use a linear solver, the choice of which can impact performance. To specify one, we use the `linsolve` option (given to the solver function, *not* the `solve` command). E.g. to use the `KLUFactorization` linear solver (which requires loading the [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) package) we run ```@example ode_simulation_performance_3 -using LinearSolve +using LinearSolve, OrdinaryDiffEqRosenbrock solve(oprob, Rodas5P(linsolve = KLUFactorization())) nothing # hide ```