diff --git a/docs/src/extrapolation_methods.md b/docs/src/extrapolation_methods.md index c9e35962..fbce5d0f 100644 --- a/docs/src/extrapolation_methods.md +++ b/docs/src/extrapolation_methods.md @@ -60,7 +60,7 @@ this extrapolation type extends the interpolation such that `A(t + T) == A(t)` f T = last(A.t) - first(A.t) t_eval_left = range(first(t) - 2T, first(t), length = 100) t_eval_right = range(last(t), last(t) + 2T, length = 100) -A = QuadraticSpline(u,t; extrapolation = ExtrapolationType.periodic) +A = QuadraticSpline(u, t; extrapolation = ExtrapolationType.periodic) plot(A) plot!(t_eval_left, A.(t_eval_left); label = "extrapolation down") plot!(t_eval_right, A.(t_eval_right); label = "extrapolation up") @@ -71,7 +71,7 @@ plot!(t_eval_right, A.(t_eval_right); label = "extrapolation up") this extrapolation type extends the interpolation such that `A(t_ + t) == A(t_ - t)` for all `t_, t` such that `(t_ - first(A.t)) % T == 0` and `0 < t < T`, where `T = last(A.t) - first(A.t)`. ```@example tutorial -A = QuadraticSpline(u,t; extrapolation = ExtrapolationType.reflective) +A = QuadraticSpline(u, t; extrapolation = ExtrapolationType.reflective) plot(A) plot!(t_eval_left, A.(t_eval_left); label = "extrapolation down") plot!(t_eval_right, A.(t_eval_right); label = "extrapolation up") diff --git a/src/derivatives.jl b/src/derivatives.jl index 1d790e66..7ee8fe2e 100644 --- a/src/derivatives.jl +++ b/src/derivatives.jl @@ -33,8 +33,8 @@ function _extrapolate_derivative_down(A, t, order) derivative(A, t_, order) else # extrapolation_left == ExtrapolationType.reflective - t_, _ = transformation_reflective(A, t) - derivative(A, t_, order) + t_, n = transformation_reflective(A, t) + isodd(n) ? -derivative(A, t_, order) : derivative(A, t_, order) end end @@ -58,8 +58,8 @@ function _extrapolate_derivative_up(A, t, order) derivative(A, t_, order) else # extrapolation_right == ExtrapolationType.reflective - t_, _ = transformation_reflective(A, t) - derivative(A, t_, order) + t_, n = transformation_reflective(A, t) + iseven(n) ? -derivative(A, t_, order) : derivative(A, t_, order) end end diff --git a/src/integrals.jl b/src/integrals.jl index a8da0d3a..6948f8f9 100644 --- a/src/integrals.jl +++ b/src/integrals.jl @@ -52,7 +52,10 @@ function integral(A::AbstractInterpolation, t1::Number, t2::Number) # Complete intervals if A.cache_parameters - total += A.I[idx2] - A.I[idx1 + 1] + total += A.I[idx2 - 1] + if idx1 > 0 + total -= A.I[idx1] + end else for idx in (idx1 + 1):(idx2 - 1) total += _integral(A, idx, A.t[idx], A.t[idx + 1]) diff --git a/src/interpolation_methods.jl b/src/interpolation_methods.jl index c69deb49..a0437b02 100644 --- a/src/interpolation_methods.jl +++ b/src/interpolation_methods.jl @@ -49,7 +49,7 @@ function _extrapolate_up(A, t) # extrapolation_right == ExtrapolationType.reflective t_, _ = transformation_reflective(A, t) _interpolate(A, t_, A.iguesser) - end + end end # Linear Interpolation diff --git a/src/interpolation_utils.jl b/src/interpolation_utils.jl index fff61eca..3f1e9682 100644 --- a/src/interpolation_utils.jl +++ b/src/interpolation_utils.jl @@ -326,4 +326,4 @@ function transformation_reflective(A, t) t_ = isodd(n) ? last(A.t) - t_ : first(A.t) + t_ (n > 0) && (n -= 1) t_, n -end \ No newline at end of file +end diff --git a/test/extrapolation_tests.jl b/test/extrapolation_tests.jl index 7fa75f06..fa12be1b 100644 --- a/test/extrapolation_tests.jl +++ b/test/extrapolation_tests.jl @@ -1,43 +1,53 @@ -using DataInterpolations +using DataInterpolations, Test +using ForwardDiff +using QuadGK -function test_extrapolation_errors(method, u, t) - A = method(u, t) - @test A.extrapolation_right == ExtrapolationType.none - @test A.extrapolation_left == ExtrapolationType.none - for (error_type, t_eval) in zip( - (DataInterpolations.LeftExtrapolationError, - DataInterpolations.RightExtrapolationError), - (first(t) - 1, last(t) + 1)) - @test_throws error_type A(t_eval) - @test_throws error_type DataInterpolations.derivative( - A, t_eval) - @test_throws error_type DataInterpolations.derivative( - A, t_eval, 2) - @test_throws error_type DataInterpolations.integral( - A, t_eval) +function test_extrapolation(method, u, t) + @testset "Extrapolation errors" begin + A = method(u, t) + @test A.extrapolation_right == ExtrapolationType.none + @test A.extrapolation_left == ExtrapolationType.none + for (error_type, t_eval) in zip( + (DataInterpolations.LeftExtrapolationError, + DataInterpolations.RightExtrapolationError), + (first(t) - 1, last(t) + 1)) + @test_throws error_type A(t_eval) + @test_throws error_type DataInterpolations.derivative( + A, t_eval) + @test_throws error_type DataInterpolations.derivative( + A, t_eval, 2) + @test_throws error_type DataInterpolations.integral( + A, t_eval) + end end -end -function test_constant_extrapolation(method, u, t) - A = method(u, t; extrapolation_left = ExtrapolationType.constant, - extrapolation_right = ExtrapolationType.constant) - t_lower = first(t) - 1 - t_upper = last(t) + 1 - @test A(t_lower) == first(u) - @test A(t_upper) == last(u) - @test DataInterpolations.derivative(A, t_lower) == 0 - @test DataInterpolations.derivative(A, t_upper) == 0 - @test DataInterpolations.integral(A, t_lower, first(t)) ≈ - first(u) * (first(t) - t_lower) - @test DataInterpolations.integral(A, last(t), t_upper) ≈ last(u) * (t_upper - last(t)) + for extrapolation_type in instances(ExtrapolationType.T) + (extrapolation_type == ExtrapolationType.none) && continue + @testset "extrapolation type $extrapolation_type" begin + A = method(u, t; extrapolation = extrapolation_type) + + t_eval = first(t) - 1.5 + @test DataInterpolations.derivative(A, t_eval) ≈ + ForwardDiff.derivative(A, t_eval) + + t_eval = last(t) + 1.5 + @test DataInterpolations.derivative(A, t_eval) ≈ + ForwardDiff.derivative(A, t_eval) + + T = last(A.t) - first(A.t) + t1 = first(t) - 2.5T + t2 = last(t) + 3.5T + @test DataInterpolations.integral(A, t1, t2) ≈ + quadgk(A, t1, t2; atol = 1e-12, rtol = 1e-12)[1] + end + end end @testset "Linear Interpolation" begin u = [1.0, 2.0] t = [1.0, 2.0] - test_extrapolation_errors(LinearInterpolation, u, t) - test_constant_extrapolation(LinearInterpolation, u, t) + test_extrapolation(LinearInterpolation, u, t) for extrapolation_type in [ExtrapolationType.linear, ExtrapolationType.extension] # Down extrapolation @@ -64,8 +74,7 @@ end u = [1.0, 3.0, 2.0] t = 1:3 - test_extrapolation_errors(QuadraticInterpolation, u, t) - test_constant_extrapolation(LinearInterpolation, u, t) + test_extrapolation(QuadraticInterpolation, u, t) # Linear down extrapolation A = QuadraticInterpolation(u, t; extrapolation_left = ExtrapolationType.linear) diff --git a/test/parameter_tests.jl b/test/parameter_tests.jl index 3afe2a17..1f8ff574 100644 --- a/test/parameter_tests.jl +++ b/test/parameter_tests.jl @@ -1,10 +1,18 @@ using DataInterpolations +function test_cached_integration(method, args...) + A_c = method(args...; cache_parameters = true) + A_nc = method(args...; cache_parameters = false) + @test DataInterpolations.integral(A_c, last(A_c.t)) ≈ + DataInterpolations.integral(A_nc, last(A_nc.t)) +end + @testset "Linear Interpolation" begin u = [1.0, 5.0, 3.0, 4.0, 4.0] t = collect(1:5) A = LinearInterpolation(u, t; cache_parameters = true) @test A.p.slope ≈ [4.0, -2.0, 1.0, 0.0] + test_cached_integration(LinearInterpolation, u, t) end @testset "Quadratic Interpolation" begin @@ -13,6 +21,7 @@ end A = QuadraticInterpolation(u, t; cache_parameters = true) @test A.p.α ≈ [-3.0, 1.5, -0.5, -0.5] @test A.p.β ≈ [7.0, -3.5, 1.5, 0.5] + test_cached_integration(QuadraticInterpolation, u, t) end @testset "Quadratic Spline" begin @@ -21,6 +30,7 @@ end A = QuadraticSpline(u, t; cache_parameters = true) @test A.p.α ≈ [-9.5, 3.5, -0.5, -0.5] @test A.p.β ≈ [13.5, -5.5, 1.5, 0.5] + test_cached_integration(QuadraticSpline, u, t) end @testset "Cubic Spline" begin @@ -29,6 +39,7 @@ end A = CubicSpline(u, t; cache_parameters = true) @test A.p.c₁ ≈ [6.839285714285714, 1.642857142857143, 4.589285714285714, 4.0] @test A.p.c₂ ≈ [1.0, 6.839285714285714, 1.642857142857143, 4.589285714285714] + test_cached_integration(CubicSpline, u, t) end @testset "Cubic Hermite Spline" begin @@ -38,6 +49,7 @@ end A = CubicHermiteSpline(du, u, t; cache_parameters = true) @test A.p.c₁ ≈ [-1.0, -5.0, -5.0, -8.0] @test A.p.c₂ ≈ [0.0, 13.0, 12.0, 9.0] + test_cached_integration(CubicHermiteSpline, du, u, t) end @testset "Quintic Hermite Spline" begin @@ -49,4 +61,5 @@ end @test A.p.c₁ ≈ [-1.0, -6.5, -8.0, -10.0] @test A.p.c₂ ≈ [1.0, 19.5, 20.0, 19.0] @test A.p.c₃ ≈ [1.5, -37.5, -37.0, -26.5] + test_cached_integration(QuinticHermiteSpline, ddu, du, u, t) end