Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ForwardDiff.gradient fails on interpolated function when passing a vector input #229

Closed
Leebre opened this issue Feb 28, 2024 · 5 comments · Fixed by #230
Closed

ForwardDiff.gradient fails on interpolated function when passing a vector input #229

Leebre opened this issue Feb 28, 2024 · 5 comments · Fixed by #230
Labels
bug Something isn't working

Comments

@Leebre
Copy link

Leebre commented Feb 28, 2024

Describe the bug 🐞

ForwardDiff.gradient seems to fail (AD error) when trying to differentiate an interpolated function using a vector input.

Expected behavior

ForwardDiff should work and output a valid gradient vector.

Minimal Reproducible Example 👇

MWE to duplicate the AD error I'm seeing with DataInterpolations.jl

cd(@__DIR__)
using Pkg
Pkg.activate("..")

using DataInterpolations
using ForwardDiff

# create an interpolated function from some discrete data:

u = rand(5)
t = 0:4
interp = LinearInterpolation(u, t,extrapolate=true)

# ForwardDiff derivative works with a single scalar argument:

grad1 = ForwardDiff.derivative(interp,2.4)

# However, the AD seems to fail, if I try to compute a gradient from a vector input (which my more complex f-function is doing):

myvec = rand(20).*4.0
interp(myvec)  # (works)

grad = ForwardDiff.gradient(interp,myvec)  #  fails

Error & Stacktrace ⚠️

ERROR: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, Float64}, Float64, 10})

Closest candidates are:
  (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat
   @ Base rounding.jl:207
  (::Type{T})(::T) where T<:Number
   @ Core boot.jl:792
  (::Type{T})(::AbstractChar) where T<:Union{AbstractChar, Number}
   @ Base char.jl:50
  ...

Stacktrace:
 [1] convert(#unused#::Type{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, Float64}, Float64, 10})
   @ Base ./number.jl:7
 [2] setindex!(A::Vector{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, Float64}, Float64, 10}, i1::Int64)
   @ Base ./array.jl:969
 [3] AbstractInterpolation
   @ ~/.julia/packages/DataInterpolations/sReNn/src/DataInterpolations.jl:36 [inlined]
 [4] AbstractInterpolation
   @ ~/.julia/packages/DataInterpolations/sReNn/src/DataInterpolations.jl:32 [inlined]
 [5] chunk_mode_gradient(f::LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, Float64}, Float64, 10, Vector{ForwardDiff.Dual{ForwardDiff.Tag{LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, Float64}, Float64, 10}}})
   @ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/gradient.jl:123
 [6] gradient(f::LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, Float64}, Float64, 10, Vector{ForwardDiff.Dual{ForwardDiff.Tag{LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, Float64}, Float64, 10}}}, ::Val{true})
   @ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/gradient.jl:21
 [7] gradient(f::LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, Float64}, Float64, 10, Vector{ForwardDiff.Dual{ForwardDiff.Tag{LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, Float64}, Float64, 10}}})
   @ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/gradient.jl:17
 [8] gradient(f::LinearInterpolation{Vector{Float64}, UnitRange{Int64}, true, Float64}, x::Vector{Float64})
   @ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/gradient.jl:17
 [9] top-level scope
   @ ~/Julia/Streamer15_devel/Temp/Interp_error.jl:25

Environment (please complete the following information):

  • Output of using Pkg; Pkg.status()
julia> Pkg.status()
Status `~/Julia/Streamer15_devel/Project.toml`
⌃ [21141c5a] AMDGPU v0.6.1
⌃ [4fba245c] ArrayInterface v7.4.11
  [fd7cec9d] BEMPoissonAxisym v0.1.0 `~/.julia/dev/BEMPoissonAxisym`
⌃ [6e4b80f9] BenchmarkTools v1.3.2
  [3e7d757e] BlockSparseMatrix v1.0.0-DEV `~/.julia/dev/BlockSparseMatrix`
⌃ [336ed68f] CSV v0.10.11
  [717857b8] DSP v0.7.9
  [a93c6f00] DataFrames v1.6.1
  [82cc6244] DataInterpolations v4.6.0
⌃ [26cc04aa] FiniteDifferences v0.12.30
  [f6369f11] ForwardDiff v0.10.36
  [d54b0c1a] GaussQuadrature v0.5.8
⌃ [a98d9a8b] Interpolations v0.14.7
⌃ [42fd0dbc] IterativeSolvers v0.9.2
⌃ [033835bb] JLD2 v0.4.35
⌅ [7ed4a6bd] LinearSolve v2.8.1
⌃ [bdcacae8] LoopVectorization v0.12.165
⌃ [2fda8390] LsqFit v0.13.0
  [23992714] MAT v0.10.6
⌃ [33e6dc65] MKL v0.6.1
⌅ [8913a72c] NonlinearSolve v2.0.1
⌅ [1dea7af3] OrdinaryDiffEq v6.57.0
⌃ [e4faabce] PProf v2.3.0
⌃ [46dd5b70] Pardiso v0.5.4
⌅ [91a5bcdd] Plots v1.39.0
⌅ [d236fae5] PreallocationTools v0.4.12
⌃ [f2b01f46] Roots v2.0.20
⌃ [47a9eef4] SparseDiffTools v2.6.0
  [276daf66] SpecialFunctions v2.3.1
  [7a60b9c1] Streamer15 v0.1.0 `~/.julia/dev/Streamer15`
  [5d786b92] TerminalLoggers v0.1.7
⌃ [811555cd] ThreadPinning v0.7.15
  [592b5752] Trapz v2.0.3
  [2f01184e] SparseArrays
Info Packages marked with ⌃ and ⌅ have new versions available, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`

  • Output of using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
julia> Pkg.status(; mode = PKGMODE_MANIFEST)
Status `~/Julia/Streamer15_devel/Manifest.toml`
⌃ [47edcb42] ADTypes v0.2.4
⌃ [21141c5a] AMDGPU v0.6.1
  [621f4979] AbstractFFTs v1.5.0
⌃ [1520ce14] AbstractTrees v0.4.4
⌅ [79e6a3ab] Adapt v3.6.2
⌅ [ec485272] ArnoldiMethod v0.2.0
⌃ [4fba245c] ArrayInterface v7.4.11
  [30b0a656] ArrayInterfaceCore v0.1.29
  [a9b6321e] Atomix v0.1.0
⌃ [13072b0f] AxisAlgorithms v1.0.1
  [fd7cec9d] BEMPoissonAxisym v0.1.0 `~/.julia/dev/BEMPoissonAxisym`
⌃ [6e4b80f9] BenchmarkTools v1.3.2
⌃ [d1d4a3ce] BitFlags v0.1.7
  [62783981] BitTwiddlingConvenienceFunctions v0.1.5
  [3e7d757e] BlockSparseMatrix v1.0.0-DEV `~/.julia/dev/BlockSparseMatrix`
  [e1450e63] BufferedStreams v1.2.1
⌅ [fa961155] CEnum v0.4.2
  [2a0fbf3d] CPUSummary v0.2.4
⌃ [336ed68f] CSV v0.10.11
  [49dc2e85] Calculus v0.5.1
⌃ [d360d2e6] ChainRulesCore v1.16.0
  [fb6a15b2] CloseOpenIntervals v0.1.12
⌃ [944b1d66] CodecZlib v0.7.2
  [35d6a980] ColorSchemes v3.24.0
  [3da002f7] ColorTypes v0.11.4
  [c3611d14] ColorVectorSpace v0.10.0
  [5ae59095] Colors v0.12.10
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.0
⌃ [34da2185] Compat v4.10.0
  [2569d6c7] ConcreteStructs v0.2.3
⌃ [f0e56b4a] ConcurrentUtilities v2.2.1
  [187b0558] ConstructionBase v1.5.4
  [d38c429a] Contour v0.6.2
  [adafc99b] CpuId v0.3.1
  [a8cc5b0e] Crayons v4.1.1
  [717857b8] DSP v0.7.9
⌃ [9a962f9c] DataAPI v1.15.0
  [a93c6f00] DataFrames v1.6.1
  [82cc6244] DataInterpolations v4.6.0
⌃ [864edb3b] DataStructures v0.18.15
  [e2d170a0] DataValueInterfaces v1.0.0
  [8bb1440f] DelimitedFiles v1.9.1
⌃ [2b5f629d] DiffEqBase v6.130.4
⌃ [f3b72e0c] DiffEqDevTools v2.38.1
⌃ [77a26b50] DiffEqNoiseProcess v5.19.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
⌃ [b4f34e82] Distances v0.10.9
⌃ [31c24e10] Distributions v0.25.102
  [ffbed154] DocStringExtensions v0.9.3
  [fa6b7ba4] DualNumbers v0.6.8
  [b305315f] Elliptic v1.0.1
  [4e289a0a] EnumX v1.0.4
⌃ [f151be2c] EnzymeCore v0.6.0
⌃ [460bff9d] ExceptionUnwrapping v0.1.9
⌅ [d4d017d3] ExponentialUtilities v1.25.0
  [e2ba6199] ExprTools v0.1.10
  [c87230d0] FFMPEG v0.4.1
⌃ [7a1cc6ca] FFTW v1.7.1
⌃ [7034ab61] FastBroadcast v0.2.6
  [9aa1b823] FastClosures v0.3.2
⌃ [29a986be] FastLapackInterface v2.0.0
⌃ [5789e2e9] FileIO v1.16.1
  [48062228] FilePathsBase v0.9.21
⌃ [1a297f60] FillArrays v1.6.1
⌃ [6a86dc24] FiniteDiff v2.21.1
⌃ [26cc04aa] FiniteDifferences v0.12.30
  [53c48c17] FixedPointNumbers v0.8.4
  [08572546] FlameGraphs v1.0.0
⌃ [59287772] Formatting v0.4.2
  [f6369f11] ForwardDiff v0.10.36
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
⌅ [0c68f7d7] GPUArrays v9.0.0
⌅ [46192b85] GPUArraysCore v0.1.5
⌅ [61eb1bfa] GPUCompiler v0.24.5
⌅ [28b8d3ca] GR v0.72.10
  [d54b0c1a] GaussQuadrature v0.5.8
  [c145ed77] GenericSchur v0.5.3
  [86223c79] Graphs v1.9.0
  [42e2da0e] Grisu v1.0.2
  [f67ccb44] HDF5 v0.17.1
⌃ [cd3eb016] HTTP v1.10.0
  [3e5b6fbb] HostCPUFeatures v0.1.16
  [34004b35] HypergeometricFunctions v0.3.23
  [615f187c] IfElse v0.1.1
  [9b13fd28] IndirectArrays v1.0.0
⌃ [d25df0c9] Inflate v0.1.3
  [842dd82b] InlineStrings v1.4.0
⌃ [a98d9a8b] Interpolations v0.14.7
  [41ab1584] InvertedIndices v1.3.0
  [92d709cd] IrrationalConstants v0.2.2
⌃ [c8e1da08] IterTools v1.8.0
⌃ [42fd0dbc] IterativeSolvers v0.9.2
  [82899510] IteratorInterfaceExtensions v1.0.0
⌃ [033835bb] JLD2 v0.4.35
⌃ [1019f520] JLFzf v0.1.5
  [692b3bcd] JLLWrappers v1.5.0
  [682c06a0] JSON v0.21.4
⌅ [ef3ab10e] KLU v0.4.1
⌃ [63c18a36] KernelAbstractions v0.9.6
⌃ [ba0b0d4f] Krylov v0.9.4
⌃ [929cbde3] LLVM v6.3.0
⌃ [b964fa9f] LaTeXStrings v1.3.0
  [23fbe1c1] Latexify v0.16.1
⌃ [10f19ff3] LayoutPointers v0.1.14
  [50d2b5c4] Lazy v0.15.1
  [1d6d02ad] LeftChildRightSiblingTrees v0.2.0
  [d3d80556] LineSearches v7.2.0
⌅ [7ed4a6bd] LinearSolve v2.8.1
⌃ [2ab3a3ac] LogExpFunctions v0.3.26
⌃ [e6f89c97] LoggingExtras v1.0.2
⌃ [bdcacae8] LoopVectorization v0.12.165
⌃ [2fda8390] LsqFit v0.13.0
  [23992714] MAT v0.10.6
⌃ [33e6dc65] MKL v0.6.1
⌃ [3da0fdf6] MPIPreferences v0.1.9
⌃ [1914dd2f] MacroTools v0.5.11
  [d125e4d3] ManualMemory v0.1.8
⌃ [739be429] MbedTLS v1.1.7
  [442fdcdd] Measures v0.3.2
  [e1d29d7a] Missings v1.1.0
  [46d2c3a1] MuladdMacro v0.2.4
  [d41bc354] NLSolversBase v7.8.3
  [2774e3e8] NLsolve v4.5.1
  [77ba4419] NaNMath v1.0.2
⌅ [8913a72c] NonlinearSolve v2.0.1
⌃ [6fe1bfb0] OffsetArrays v1.12.10
  [4d8831e6] OpenSSL v1.4.1
⌃ [429524aa] Optim v1.7.7
  [87e2bd06] OptimBase v2.0.2
⌃ [bac558e1] OrderedCollections v1.6.2
⌅ [1dea7af3] OrdinaryDiffEq v6.57.0
⌃ [90014a1f] PDMats v0.11.21
⌃ [e4faabce] PProf v2.3.0
  [65ce6f38] PackageExtensionCompat v1.0.2
  [d96e819e] Parameters v0.12.3
⌃ [46dd5b70] Pardiso v0.5.4
⌃ [69de0a69] Parsers v2.7.2
  [b98c9c47] Pipe v1.3.0
  [ccf2f8ad] PlotThemes v3.1.0
⌃ [995b91a9] PlotUtils v1.3.5
⌅ [91a5bcdd] Plots v1.39.0
  [e409e4f3] PoissonRandom v0.4.4
⌃ [f517fe37] Polyester v0.7.7
  [1d0040c9] PolyesterWeave v0.2.1
⌃ [f27b6e38] Polynomials v4.0.4
  [2dfb63ee] PooledArrays v1.4.3
  [85a6dd25] PositiveFactorizations v0.2.4
⌅ [d236fae5] PreallocationTools v0.4.12
  [aea7be01] PrecompileTools v1.2.0
  [21216c6a] Preferences v1.4.1
⌃ [08abe8d2] PrettyTables v2.2.7
  [33c8b6b6] ProgressLogging v0.1.4
  [92933f4c] ProgressMeter v1.9.0
⌃ [3349acd9] ProtoBuf v1.0.14
⌃ [1fd47b50] QuadGK v2.9.1
⌃ [74087812] Random123 v1.6.1
  [e6cf234a] RandomNumbers v1.5.3
  [c84ed2f1] Ratios v0.4.5
  [3cdcf5f2] RecipesBase v1.3.4
  [01d81517] RecipesPipeline v0.6.12
⌅ [731186ca] RecursiveArrayTools v2.38.10
⌃ [f2c3362d] RecursiveFactorization v0.2.20
  [189a3867] Reexport v1.2.2
⌃ [05181044] RelocatableFolders v1.0.0
  [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
⌃ [708f8203] Richardson v1.4.0
  [79098fc4] Rmath v0.7.1
⌃ [47965b36] RootedTrees v2.19.2
⌃ [f2b01f46] Roots v2.0.20
  [7e49a35a] RuntimeGeneratedFunctions v0.5.12
  [94e857df] SIMDTypes v0.1.0
⌃ [476501e8] SLEEFPirates v0.6.39
⌅ [0bca4576] SciMLBase v2.0.7
  [e9a6253c] SciMLNLSolve v0.1.9
⌅ [c0aeaf25] SciMLOperators v0.3.6
⌃ [6c6a2e73] Scratch v1.2.0
⌃ [91c51154] SentinelArrays v1.4.0
  [efcf1570] Setfield v1.1.1
  [992d4aef] Showoff v1.0.3
  [777ac1f9] SimpleBufferStream v1.1.0
⌅ [727e6d20] SimpleNonlinearSolve v0.1.20
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [66db9d55] SnoopPrecompile v1.0.3
⌃ [a2af1166] SortingAlgorithms v1.1.1
⌃ [47a9eef4] SparseDiffTools v2.6.0
  [e56a9233] Sparspak v0.3.9
  [276daf66] SpecialFunctions v2.3.1
⌅ [aedffcd0] Static v0.8.8
⌃ [0d7ed370] StaticArrayInterface v1.4.1
⌃ [90137ffa] StaticArrays v1.6.5
  [1e83bf80] StaticArraysCore v1.4.2
  [82ae8749] StatsAPI v1.7.0
⌅ [2913bbd2] StatsBase v0.33.21
⌃ [4c63d2b9] StatsFuns v1.3.0
  [7a60b9c1] Streamer15 v0.1.0 `~/.julia/dev/Streamer15`
⌅ [7792a7ef] StrideArraysCore v0.4.17
  [892a3eda] StringManipulation v0.3.4
⌅ [2efcf032] SymbolicIndexingInterface v0.2.2
  [3783bdb8] TableTraits v1.0.1
⌃ [bd369af6] Tables v1.11.0
  [62fd8b95] TensorCore v0.1.1
  [5d786b92] TerminalLoggers v0.1.7
⌃ [811555cd] ThreadPinning v0.7.15
  [8290d209] ThreadingUtilities v0.5.2
  [a759f4b9] TimerOutputs v0.5.23
⌅ [3bb67fe8] TranscodingStreams v0.9.13
  [592b5752] Trapz v2.0.3
⌃ [d5829a12] TriangularSolve v0.1.19
⌃ [410a4b4d] Tricks v0.1.7
  [781d530d] TruncatedStacktraces v1.4.0
⌃ [5c2747f8] URIs v1.5.0
  [3a884ed6] UnPack v1.0.2
  [1cfade01] UnicodeFun v0.4.1
⌃ [1986cc42] Unitful v1.17.0
  [45397f5d] UnitfulLatexify v1.6.3
  [013be700] UnsafeAtomics v0.2.1
  [d80eeb9a] UnsafeAtomicsLLVM v0.1.3
  [41fe7b60] Unzip v0.2.0
⌃ [3d5dd08c] VectorizationBase v0.21.64
  [19fa3120] VertexSafeGraphs v0.2.0
  [ea10d353] WeakRefStrings v1.4.2
⌅ [efce3f68] WoodburyMatrices v0.5.5
  [76eceee3] WorkerUtilities v1.6.1
⌃ [700de1a5] ZygoteRules v0.2.3
⌃ [6e34b625] Bzip2_jll v1.0.8+0
  [83423d85] Cairo_jll v1.16.1+1
  [2702e6a9] EpollShim_jll v0.0.20230411+0
  [2e619515] Expat_jll v2.5.0+0
⌅ [b22a6f82] FFMPEG_jll v4.4.2+2
  [f5851436] FFTW_jll v3.3.10+0
  [a3f928ae] Fontconfig_jll v2.13.93+0
  [d7e528f0] FreeType2_jll v2.13.1+0
  [559328eb] FriBidi_jll v1.0.10+0
⌃ [0656b61e] GLFW_jll v3.3.8+0
⌅ [d2c73de3] GR_jll v0.72.10+0
  [78b55507] Gettext_jll v0.21.0+0
  [7746bdde] Glib_jll v2.76.5+0
  [3b182d85] Graphite2_jll v1.3.14+0
  [3c863552] Graphviz_jll v2.50.0+1
⌃ [0234f1f7] HDF5_jll v1.12.2+2
  [2e76f6c2] HarfBuzz_jll v2.8.1+1
⌅ [1d5cc7b8] IntelOpenMP_jll v2023.2.0+0
⌃ [aacddb02] JpegTurbo_jll v2.1.91+0
  [c1c5ebd0] LAME_jll v3.100.1+0
  [88015f11] LERC_jll v3.0.0+1
⌅ [dad2f222] LLVMExtra_jll v0.0.26+0
⌃ [1d63c593] LLVMOpenMP_jll v15.0.4+0
⌅ [86de99a1] LLVM_jll v14.0.6+4
  [dd4b983a] LZO_jll v2.10.1+0
⌅ [e9f186c6] Libffi_jll v3.2.2+1
  [d4300ac3] Libgcrypt_jll v1.8.7+0
  [7e76a0d4] Libglvnd_jll v1.6.0+0
  [7add5ba3] Libgpg_error_jll v1.42.0+0
  [94ce4f54] Libiconv_jll v1.17.0+0
  [4b2f31a3] Libmount_jll v2.35.0+0
⌅ [89763e89] Libtiff_jll v4.5.1+1
⌃ [38a345b3] Libuuid_jll v2.36.0+0
⌅ [856f044c] MKL_jll v2022.2.0+0
  [e7412a2a] Ogg_jll v1.3.5+1
⌅ [458c3c95] OpenSSL_jll v1.1.23+0
  [efe28fd5] OpenSpecFun_jll v0.5.5+0
  [91d4177d] Opus_jll v1.3.2+0
  [36c8627f] Pango_jll v1.50.14+0
  [30392449] Pixman_jll v0.42.2+0
⌃ [c0090381] Qt6Base_jll v6.5.2+2
  [f50d1b31] Rmath_jll v0.4.0+0
  [a44049a8] Vulkan_Loader_jll v1.3.243+0
  [a2964d1f] Wayland_jll v1.21.0+1
⌃ [2381bf8a] Wayland_protocols_jll v1.25.0+0
⌃ [02c8fc9c] XML2_jll v2.11.5+0
  [aed1982a] XSLT_jll v1.1.34+0
⌃ [ffd25f8a] XZ_jll v5.4.4+0
  [f67eecfb] Xorg_libICE_jll v1.0.10+1
  [c834827a] Xorg_libSM_jll v1.2.3+0
  [4f6342f7] Xorg_libX11_jll v1.8.6+0
  [0c0b7dd1] Xorg_libXau_jll v1.0.11+0
  [935fb764] Xorg_libXcursor_jll v1.2.0+4
  [a3789734] Xorg_libXdmcp_jll v1.1.4+0
  [1082639a] Xorg_libXext_jll v1.3.4+4
  [d091e8ba] Xorg_libXfixes_jll v5.0.3+4
  [a51aa0fd] Xorg_libXi_jll v1.7.10+4
  [d1454406] Xorg_libXinerama_jll v1.1.4+4
  [ec84b674] Xorg_libXrandr_jll v1.5.2+4
  [ea2f1a96] Xorg_libXrender_jll v0.9.10+4
  [14d82f49] Xorg_libpthread_stubs_jll v0.1.1+0
  [c7cfdc94] Xorg_libxcb_jll v1.15.0+0
  [cc61e674] Xorg_libxkbfile_jll v1.1.2+0
  [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0
  [12413925] Xorg_xcb_util_image_jll v0.4.0+1
  [2def613f] Xorg_xcb_util_jll v0.4.0+1
  [975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1
  [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1
  [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1
  [35661453] Xorg_xkbcomp_jll v1.4.6+0
  [33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0
  [c5fb5394] Xorg_xtrans_jll v1.5.0+0
  [3161d3a3] Zstd_jll v1.5.5+0
  [35ca27e7] eudev_jll v3.2.9+0
⌅ [214eeab7] fzf_jll v0.29.0+0
  [1a1c6b14] gperf_jll v3.1.1+0
  [a4ae2306] libaom_jll v3.4.0+0
  [0ac62f75] libass_jll v0.15.1+0
  [2db6ffa8] libevdev_jll v1.11.0+0
  [f638f0a6] libfdk_aac_jll v2.0.2+0
  [36db933b] libinput_jll v1.18.0+0
⌃ [b53b4c65] libpng_jll v1.6.38+0
  [f27f6e37] libvorbis_jll v1.3.7+1
  [009596ad] mtdev_jll v1.1.6+0
  [cf2c5f97] pprof_jll v1.0.1+0
  [1270edf5] x264_jll v2021.5.5+0
  [dfaa095f] x265_jll v3.5.0+0
  [d8fb68d0] xkbcommon_jll v1.4.1+1
  [0dad84c5] ArgTools v1.1.1
  [56f22d72] Artifacts
  [2a0f44e3] Base64
  [ade2ca70] Dates
  [8ba89e20] Distributed
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching
  [9fa8497b] Future
  [b77e0a4c] InteractiveUtils
  [4af54fe1] LazyArtifacts
  [b27032c2] LibCURL v0.6.3
  [76f85450] LibGit2
  [8f399da3] Libdl
  [37e2e46d] LinearAlgebra
  [56ddb016] Logging
  [d6f4376e] Markdown
  [a63ad114] Mmap
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.9.2
  [de0858da] Printf
  [9abbd945] Profile
  [3fa0cd96] REPL
  [9a3f8284] Random
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization
  [1a1011a3] SharedArrays
  [6462fe0b] Sockets
  [2f01184e] SparseArrays
  [10745b16] Statistics v1.9.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test
  [cf7118a7] UUIDs
  [4ec0a83e] Unicode
  [e66e0078] CompilerSupportLibraries_jll v1.0.5+0
  [d55e3150] LLD_jll v14.0.6+3
  [deac9b47] LibCURL_jll v7.84.0+0
  [29816b5a] LibSSH2_jll v1.10.2+0
  [c8ffd9c3] MbedTLS_jll v2.28.2+0
  [14a3606d] MozillaCACerts_jll v2022.10.11
  [4536629a] OpenBLAS_jll v0.3.21+4
  [05823500] OpenLibm_jll v0.8.1+0
  [efcefdf7] PCRE2_jll v10.42.0+0
  [bea87d4a] SuiteSparse_jll v5.10.1+6
  [83775a58] Zlib_jll v1.2.13+0
  [8f36deef] libLLVM_jll v14.0.6+3
  [8e850b90] libblastrampoline_jll v5.8.0+0
  [8e850ede] nghttp2_jll v1.48.0+0
  [3f19e933] p7zip_jll v17.4.0+0
Info Packages marked with ⌃ and ⌅ have new versions available, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`

  • Output of versioninfo()
julia> versioninfo()
Julia Version 1.9.2
Commit e4ee485e909 (2023-07-05 09:39 UTC)
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 12 × AMD Ryzen 5 7530U with Radeon Graphics
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-14.0.6 (ORCJIT, znver3)
  Threads: 6 on 12 virtual cores
Environment:
  JULIA_LOAD_PATH = /usr/share/gmsh/api/julia/:
  JULIA_EDITOR = code
  JULIA_NUM_THREADS = 6

Additional context

The issue was discovered when trying to use an interpolated function inside an f-function being used with OrdinaryDiffEQ (KenCarp4 solver).

@Leebre Leebre added the bug Something isn't working label Feb 28, 2024
@ChrisRackauckas
Copy link
Member

We have a derivative overload, but it must only capture and handle the chunk size 1 case. @sathvikbhagavan could you take a look?

@sathvikbhagavan
Copy link
Member

@Leebre, I am not sure why you would do ForwardDiff.gradient? This is a not a vector valued function.

Doing:

julia> grad = ForwardDiff.derivative.((interp,), myvec)
20-element Vector{Float64}:
  0.34909318900754527
  0.5810773018949766
  0.5810773018949766
  0.34909318900754527
  0.34909318900754527
 -0.44018781608409474
  0.5810773018949766
 -0.28332889046138166
  
  0.34909318900754527
  0.34909318900754527
 -0.44018781608409474
  0.34909318900754527
  0.34909318900754527
  0.5810773018949766
  0.34909318900754527

works. You can also use derivative method in DataInterpolations as well:

julia> DataInterpolations.derivative.((interp,), myvec)
20-element Vector{Float64}:
  0.34909318900754527
  0.5810773018949766
  0.5810773018949766
  0.34909318900754527
  0.34909318900754527
 -0.44018781608409474
  0.5810773018949766
 -0.28332889046138166
  
  0.34909318900754527
  0.34909318900754527
 -0.44018781608409474
  0.34909318900754527
  0.34909318900754527
  0.5810773018949766
  0.34909318900754527

@Leebre
Copy link
Author

Leebre commented Feb 29, 2024

@sathvikbhagavan well ... it can be vector-valued though, in the sense that the function can accept a vector argument and output a vector.

To provide more context for my use case: I am not calling ForwardDiff.gradient directly. I am solving a PDE over a discretized mesh domain using OrdinaryDiffEq, and I am using interpolated functions for several model parameters, which are built into my f-function (derivative function). Those parameters are interpolated based on data. Part of the OrdinaryDiffEq solver process requires computation of the jacobian of the f-function, which (if using AD) requires a vector of dual numbers to be passed through the f-function. So, for that to work, the interpolation functions also need to be able to pass through this vector of dual numbers. I used ForwardDiff.gradient as a simple example in the MWE, since it seems to be doing essentially the same thing and seems to reproduce the same error.

I suppose I could add a for loop in my f-function, to pass each entry of the vector individually to the interpolation function. However, I would be concerned that adding for loops to my inner f-function may have a performance impact on my code.

The interpolation functions in Interpolations.jl do allow for a vector of dual numbers to be passed through. I noticed this issue after switching from Interpolations.jl to DataInterpolations.

Perhaps @ChrisRackauckas could provide some additional comments on whether this functionality should be present?

@ChrisRackauckas
Copy link
Member

It needs to be a Jacobian otherwise you get a ForwardDiff error:

using DataInterpolations
using ForwardDiff

# create an interpolated function from some discrete data:

u = rand(5)
t = 0:4
interp = LinearInterpolation(u, t,extrapolate=true)

# ForwardDiff derivative works with a single scalar argument:

grad1 = ForwardDiff.derivative(interp,2.4)

# However, the AD seems to fail, if I try to compute a gradient from a vector input (which my more complex f-function is doing):

myvec = rand(20).*4.0
interp(myvec)  # (works)

grad = ForwardDiff.jacobian(interp,myvec)  #  works!

but this needs #230

@Leebre
Copy link
Author

Leebre commented Mar 4, 2024

@ChrisRackauckas thanks for addressing this. I will give it a try when I get a chance over the next few days!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants