diff --git a/src/LinearSolve.jl b/src/LinearSolve.jl index 0d70f0123..2d586547f 100644 --- a/src/LinearSolve.jl +++ b/src/LinearSolve.jl @@ -199,14 +199,12 @@ end end end -@static if VERSION > v"1.9-" - PrecompileTools.@compile_workload begin - A = sprand(4, 4, 0.3) + I - b = rand(4) - prob = LinearProblem(A * A', b) - sol = solve(prob) # in case sparspak is used as default - sol = solve(prob, SparspakFactorization()) - end +PrecompileTools.@compile_workload begin + A = sprand(4, 4, 0.3) + I + b = rand(4) + prob = LinearProblem(A * A', b) + sol = solve(prob) # in case sparspak is used as default + sol = solve(prob, SparspakFactorization()) end export LUFactorization, SVDFactorization, QRFactorization, GenericFactorization, diff --git a/src/factorization.jl b/src/factorization.jl index 786b202c3..ec3fad4fd 100644 --- a/src/factorization.jl +++ b/src/factorization.jl @@ -65,23 +65,9 @@ struct GenericLUFactorization{P} <: AbstractFactorization pivot::P end -function LUFactorization() - pivot = @static if VERSION < v"1.7beta" - Val(true) - else - RowMaximum() - end - LUFactorization(pivot) -end +LUFactorization() = LUFactorization(RowMaximum()) -function GenericLUFactorization() - pivot = @static if VERSION < v"1.7beta" - Val(true) - else - RowMaximum() - end - GenericLUFactorization(pivot) -end +GenericLUFactorization() = GenericLUFactorization(RowMaximum()) function do_factorization(alg::LUFactorization, A, b, u) A = convert(AbstractMatrix, A) @@ -122,15 +108,6 @@ function init_cacheval(alg::Union{LUFactorization, GenericLUFactorization}, nothing end -@static if VERSION < v"1.9-" - function init_cacheval(alg::Union{LUFactorization, GenericLUFactorization}, - A::Union{Diagonal, SymTridiagonal}, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - nothing - end -end - ## QRFactorization """ @@ -151,23 +128,10 @@ struct QRFactorization{P} <: AbstractFactorization inplace::Bool end -function QRFactorization(inplace = true) - pivot = @static if VERSION < v"1.7beta" - Val(false) - else - NoPivot() - end - QRFactorization(pivot, 16, inplace) -end +QRFactorization(inplace = true) = QRFactorization(NoPivot(), 16, inplace) -@static if VERSION ≥ v"1.7beta" - function QRFactorization(pivot::LinearAlgebra.PivotingStrategy, inplace::Bool = true) - QRFactorization(pivot, 16, inplace) - end -else - function QRFactorization(pivot::Val, inplace::Bool = true) - QRFactorization(pivot, 16, inplace) - end +function QRFactorization(pivot::LinearAlgebra.PivotingStrategy, inplace::Bool = true) + QRFactorization(pivot, 16, inplace) end function do_factorization(alg::QRFactorization, A, b, u) @@ -188,19 +152,10 @@ end const PREALLOCATED_QR = ArrayInterface.qr_instance(rand(1, 1)) -@static if VERSION < v"1.7beta" - function init_cacheval(alg::QRFactorization{Val{false}}, A::Matrix{Float64}, b, u, Pl, - Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - PREALLOCATED_QR - end -else - function init_cacheval(alg::QRFactorization{NoPivot}, A::Matrix{Float64}, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - PREALLOCATED_QR - end +function init_cacheval(alg::QRFactorization{NoPivot}, A::Matrix{Float64}, b, u, Pl, Pr, + maxiters::Int, abstol, reltol, verbose::Bool, + assumptions::OperatorAssumptions) + PREALLOCATED_QR end function init_cacheval(alg::QRFactorization, A::AbstractSciMLOperator, b, u, Pl, Pr, @@ -209,15 +164,6 @@ function init_cacheval(alg::QRFactorization, A::AbstractSciMLOperator, b, u, Pl, nothing end -@static if VERSION < v"1.9-" - function init_cacheval(alg::QRFactorization, - A::Union{Diagonal, SymTridiagonal, Tridiagonal}, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - nothing - end -end - ## CholeskyFactorization """ @@ -240,40 +186,20 @@ struct CholeskyFactorization{P, P2} <: AbstractFactorization end function CholeskyFactorization(; pivot = nothing, tol = 0.0, shift = 0.0, perm = nothing) - if pivot === nothing - pivot = @static if VERSION < v"1.8beta" - Val(false) - else - NoPivot() - end - end + pivot === nothing && (pivot = NoPivot()) CholeskyFactorization(pivot, 16, shift, perm) end -@static if VERSION > v"1.8-" - function do_factorization(alg::CholeskyFactorization, A, b, u) - A = convert(AbstractMatrix, A) - if A isa SparseMatrixCSC - fact = cholesky(A; shift = alg.shift, check = false, perm = alg.perm) - elseif alg.pivot === Val(false) || alg.pivot === NoPivot() - fact = cholesky!(A, alg.pivot; check = false) - else - fact = cholesky!(A, alg.pivot; tol = alg.tol, check = false) - end - return fact - end -else - function do_factorization(alg::CholeskyFactorization, A, b, u) - A = convert(AbstractMatrix, A) - if A isa SparseMatrixCSC - fact = cholesky!(A; shift = alg.shift, perm = alg.perm) - elseif alg.pivot === Val(false) || alg.pivot === NoPivot() - fact = cholesky!(A, alg.pivot) - else - fact = cholesky!(A, alg.pivot; tol = alg.tol) - end - return fact +function do_factorization(alg::CholeskyFactorization, A, b, u) + A = convert(AbstractMatrix, A) + if A isa SparseMatrixCSC + fact = cholesky(A; shift = alg.shift, check = false, perm = alg.perm) + elseif alg.pivot === Val(false) || alg.pivot === NoPivot() + fact = cholesky!(A, alg.pivot; check = false) + else + fact = cholesky!(A, alg.pivot; tol = alg.tol, check = false) end + return fact end function init_cacheval(alg::CholeskyFactorization, A, b, u, Pl, Pr, @@ -282,13 +208,7 @@ function init_cacheval(alg::CholeskyFactorization, A, b, u, Pl, Pr, ArrayInterface.cholesky_instance(convert(AbstractMatrix, A), alg.pivot) end -@static if VERSION < v"1.8beta" - cholpivot = Val(false) -else - cholpivot = NoPivot() -end - -const PREALLOCATED_CHOLESKY = ArrayInterface.cholesky_instance(rand(1, 1), cholpivot) +const PREALLOCATED_CHOLESKY = ArrayInterface.cholesky_instance(rand(1, 1), NoPivot()) function init_cacheval(alg::CholeskyFactorization, A::Matrix{Float64}, b, u, Pl, Pr, maxiters::Int, abstol, reltol, verbose::Bool, @@ -303,22 +223,6 @@ function init_cacheval(alg::CholeskyFactorization, nothing end -@static if VERSION < v"1.9beta" - function init_cacheval(alg::CholeskyFactorization, - A::Union{SymTridiagonal, Tridiagonal}, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - nothing - end - - function init_cacheval(alg::CholeskyFactorization, - A::Adjoint{<:Number, <:Array}, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - nothing - end -end - ## LDLtFactorization struct LDLtFactorization{T} <: AbstractFactorization @@ -396,15 +300,6 @@ function init_cacheval(alg::SVDFactorization, A, b, u, Pl, Pr, nothing end -@static if VERSION < v"1.9-" - function init_cacheval(alg::SVDFactorization, - A::Union{Diagonal, SymTridiagonal, Tridiagonal}, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - nothing - end -end - ## BunchKaufmanFactorization """ @@ -693,15 +588,8 @@ Base.@kwdef struct UMFPACKFactorization <: AbstractFactorization check_pattern::Bool = true # Check factorization re-use end -@static if VERSION < v"1.9.0-DEV.1622" - const PREALLOCATED_UMFPACK = SparseArrays.UMFPACK.UmfpackLU(C_NULL, C_NULL, 0, 0, - [0], Int[], Float64[], 0) - finalizer(SparseArrays.UMFPACK.umfpack_free_symbolic, PREALLOCATED_UMFPACK) -else - const PREALLOCATED_UMFPACK = SparseArrays.UMFPACK.UmfpackLU(SparseMatrixCSC(0, 0, [1], - Int[], - Float64[])) -end +const PREALLOCATED_UMFPACK = SparseArrays.UMFPACK.UmfpackLU(SparseMatrixCSC(0, 0, [1], + Int[], Float64[])) function init_cacheval(alg::UMFPACKFactorization, A, b, u, Pl, Pr, @@ -723,20 +611,8 @@ function init_cacheval(alg::UMFPACKFactorization, A::AbstractSparseArray, b, u, verbose::Bool, assumptions::OperatorAssumptions) A = convert(AbstractMatrix, A) zerobased = SparseArrays.getcolptr(A)[1] == 0 - @static if VERSION < v"1.9.0-DEV.1622" - res = SparseArrays.UMFPACK.UmfpackLU(C_NULL, C_NULL, size(A, 1), size(A, 2), - zerobased ? - copy(SparseArrays.getcolptr(A)) : - SparseArrays.decrement(SparseArrays.getcolptr(A)), - zerobased ? copy(rowvals(A)) : - SparseArrays.decrement(rowvals(A)), - copy(nonzeros(A)), 0) - finalizer(SparseArrays.UMFPACK.umfpack_free_symbolic, res) - return res - else - return SparseArrays.UMFPACK.UmfpackLU(SparseMatrixCSC(size(A)..., getcolptr(A), - rowvals(A), nonzeros(A))) - end + return SparseArrays.UMFPACK.UmfpackLU(SparseMatrixCSC(size(A)..., getcolptr(A), + rowvals(A), nonzeros(A))) end function SciMLBase.solve!(cache::LinearCache, alg::UMFPACKFactorization; kwargs...) @@ -887,42 +763,22 @@ function init_cacheval(alg::CHOLMODFactorization, PREALLOCATED_CHOLMOD end -@static if VERSION > v"1.8-" - function SciMLBase.solve!(cache::LinearCache, alg::CHOLMODFactorization; kwargs...) - A = cache.A - A = convert(AbstractMatrix, A) +function SciMLBase.solve!(cache::LinearCache, alg::CHOLMODFactorization; kwargs...) + A = cache.A + A = convert(AbstractMatrix, A) - if cache.isfresh - cacheval = @get_cacheval(cache, :CHOLMODFactorization) - fact = cholesky(A; check = false) - if !LinearAlgebra.issuccess(fact) - ldlt!(fact, A; check = false) - end - cache.cacheval = fact - cache.isfresh = false + if cache.isfresh + cacheval = @get_cacheval(cache, :CHOLMODFactorization) + fact = cholesky(A; check = false) + if !LinearAlgebra.issuccess(fact) + ldlt!(fact, A; check = false) end - - cache.u .= @get_cacheval(cache, :CHOLMODFactorization) \ cache.b - SciMLBase.build_linear_solution(alg, cache.u, nothing, cache) + cache.cacheval = fact + cache.isfresh = false end -else - function SciMLBase.solve!(cache::LinearCache, alg::CHOLMODFactorization; kwargs...) - A = cache.A - A = convert(AbstractMatrix, A) - - if cache.isfresh - cacheval = @get_cacheval(cache, :CHOLMODFactorization) - fact = cholesky(A) - if !LinearAlgebra.issuccess(fact) - ldlt!(fact, A) - end - cache.cacheval = fact - cache.isfresh = false - end - cache.u .= @get_cacheval(cache, :CHOLMODFactorization) \ cache.b - SciMLBase.build_linear_solution(alg, cache.u, nothing, cache) - end + cache.u .= @get_cacheval(cache, :CHOLMODFactorization) \ cache.b + SciMLBase.build_linear_solution(alg, cache.u, nothing, cache) end ## RFLUFactorization @@ -964,13 +820,11 @@ function init_cacheval(alg::RFLUFactorization, nothing, nothing end -@static if VERSION < v"1.9-" - function init_cacheval(alg::RFLUFactorization, - A::Union{Diagonal, SymTridiagonal, Tridiagonal}, b, u, Pl, Pr, - maxiters::Int, - abstol, reltol, verbose::Bool, assumptions::OperatorAssumptions) - nothing, nothing - end +function init_cacheval(alg::RFLUFactorization, + A::Union{Diagonal, SymTridiagonal, Tridiagonal}, b, u, Pl, Pr, + maxiters::Int, + abstol, reltol, verbose::Bool, assumptions::OperatorAssumptions) + nothing, nothing end function SciMLBase.solve!(cache::LinearCache, alg::RFLUFactorization{P, T}; @@ -1008,27 +862,14 @@ struct NormalCholeskyFactorization{P} <: AbstractFactorization end function NormalCholeskyFactorization(; pivot = nothing) - if pivot === nothing - pivot = @static if VERSION < v"1.8beta" - Val(false) - else - NoPivot() - end - end + pivot === nothing && (pivot = NoPivot()) NormalCholeskyFactorization(pivot) end default_alias_A(::NormalCholeskyFactorization, ::Any, ::Any) = true default_alias_b(::NormalCholeskyFactorization, ::Any, ::Any) = true -@static if VERSION < v"1.8beta" - normcholpivot = Val(false) -else - normcholpivot = NoPivot() -end - -const PREALLOCATED_NORMALCHOLESKY = ArrayInterface.cholesky_instance(rand(1, 1), - normcholpivot) +const PREALLOCATED_NORMALCHOLESKY = ArrayInterface.cholesky_instance(rand(1, 1), NoPivot()) function init_cacheval(alg::NormalCholeskyFactorization, A::Union{AbstractSparseArray, @@ -1051,63 +892,25 @@ function init_cacheval(alg::NormalCholeskyFactorization, nothing end -@static if VERSION < v"1.9-" - function init_cacheval(alg::NormalCholeskyFactorization, - A::Union{Tridiagonal, SymTridiagonal, Adjoint}, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - nothing - end -end - -@static if VERSION > v"1.8-" - function SciMLBase.solve!(cache::LinearCache, alg::NormalCholeskyFactorization; - kwargs...) - A = cache.A - A = convert(AbstractMatrix, A) - if cache.isfresh - if A isa SparseMatrixCSC - fact = cholesky(Symmetric((A)' * A, :L); check = false) - else - fact = cholesky(Symmetric((A)' * A, :L), alg.pivot; check = false) - end - cache.cacheval = fact - cache.isfresh = false - end +function SciMLBase.solve!(cache::LinearCache, alg::NormalCholeskyFactorization; kwargs...) + A = cache.A + A = convert(AbstractMatrix, A) + if cache.isfresh if A isa SparseMatrixCSC - cache.u .= @get_cacheval(cache, :NormalCholeskyFactorization) \ (A' * cache.b) - y = cache.u + fact = cholesky(Symmetric((A)' * A, :L); check = false) else - y = ldiv!(cache.u, - @get_cacheval(cache, :NormalCholeskyFactorization), - A' * cache.b) + fact = cholesky(Symmetric((A)' * A, :L), alg.pivot; check = false) end - SciMLBase.build_linear_solution(alg, y, nothing, cache) + cache.cacheval = fact + cache.isfresh = false end -else - function SciMLBase.solve!(cache::LinearCache, alg::NormalCholeskyFactorization; - kwargs...) - A = cache.A - A = convert(AbstractMatrix, A) - if cache.isfresh - if A isa SparseMatrixCSC - fact = cholesky(Symmetric((A)' * A, :L)) - else - fact = cholesky(Symmetric((A)' * A, :L), alg.pivot) - end - cache.cacheval = fact - cache.isfresh = false - end - if A isa SparseMatrixCSC - cache.u .= @get_cacheval(cache, :NormalCholeskyFactorization) \ (A' * cache.b) - y = cache.u - else - y = ldiv!(cache.u, - @get_cacheval(cache, :NormalCholeskyFactorization), - A' * cache.b) - end - SciMLBase.build_linear_solution(alg, y, nothing, cache) + if A isa SparseMatrixCSC + cache.u .= @get_cacheval(cache, :NormalCholeskyFactorization) \ (A' * cache.b) + y = cache.u + else + y = ldiv!(cache.u, @get_cacheval(cache, :NormalCholeskyFactorization), A' * cache.b) end + SciMLBase.build_linear_solution(alg, y, nothing, cache) end ## NormalBunchKaufmanFactorization @@ -1231,47 +1034,23 @@ struct FastQRFactorization{P} <: AbstractFactorization blocksize::Int end -function FastQRFactorization() - if VERSION < v"1.7beta" - FastQRFactorization(Val(false), 36) - else - FastQRFactorization(NoPivot(), 36) - end - # is 36 or 16 better here? LinearAlgebra and FastLapackInterface use 36, - # but QRFactorization uses 16. -end - -@static if VERSION < v"1.7beta" - function init_cacheval(alg::FastQRFactorization{Val{false}}, A, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - ws = QRWYWs(A; blocksize = alg.blocksize) - return WorkspaceAndFactors(ws, - ArrayInterface.qr_instance(convert(AbstractMatrix, A))) - end +# is 36 or 16 better here? LinearAlgebra and FastLapackInterface use 36, +# but QRFactorization uses 16. +FastQRFactorization() = FastQRFactorization(NoPivot(), 36) - function init_cacheval(::FastQRFactorization{Val{true}}, A, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - ws = QRpWs(A) - return WorkspaceAndFactors(ws, - ArrayInterface.qr_instance(convert(AbstractMatrix, A))) - end -else - function init_cacheval(alg::FastQRFactorization{NoPivot}, A, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - ws = QRWYWs(A; blocksize = alg.blocksize) - return WorkspaceAndFactors(ws, - ArrayInterface.qr_instance(convert(AbstractMatrix, A))) - end - function init_cacheval(::FastQRFactorization{ColumnNorm}, A, b, u, Pl, Pr, - maxiters::Int, abstol, reltol, verbose::Bool, - assumptions::OperatorAssumptions) - ws = QRpWs(A) - return WorkspaceAndFactors(ws, - ArrayInterface.qr_instance(convert(AbstractMatrix, A))) - end +function init_cacheval(alg::FastQRFactorization{NoPivot}, A, b, u, Pl, Pr, + maxiters::Int, abstol, reltol, verbose::Bool, + assumptions::OperatorAssumptions) + ws = QRWYWs(A; blocksize = alg.blocksize) + return WorkspaceAndFactors(ws, + ArrayInterface.qr_instance(convert(AbstractMatrix, A))) +end +function init_cacheval(::FastQRFactorization{ColumnNorm}, A, b, u, Pl, Pr, + maxiters::Int, abstol, reltol, verbose::Bool, + assumptions::OperatorAssumptions) + ws = QRpWs(A) + return WorkspaceAndFactors(ws, + ArrayInterface.qr_instance(convert(AbstractMatrix, A))) end function SciMLBase.solve!(cache::LinearCache, alg::FastQRFactorization{P}; @@ -1282,12 +1061,7 @@ function SciMLBase.solve!(cache::LinearCache, alg::FastQRFactorization{P}; if cache.isfresh # we will fail here if A is a different *size* than in a previous version of the same cache. # it may instead be desirable to resize the workspace. - nopivot = @static if VERSION < v"1.7beta" - Val{false} - else - NoPivot - end - if P === nopivot + if P === NoPivot @set! ws_and_fact.factors = LinearAlgebra.QRCompactWY(LAPACK.geqrt!(ws_and_fact.workspace, A)...) else