Skip to content

Commit fef0a40

Browse files
Merge pull request #460 from termi-official/do/update-preconditioner-docs
Update preconditioner docs
2 parents 328af73 + eb65943 commit fef0a40

File tree

1 file changed

+10
-4
lines changed

1 file changed

+10
-4
lines changed

docs/src/basics/Preconditioners.md

+10-4
Original file line numberDiff line numberDiff line change
@@ -83,13 +83,13 @@ The following preconditioners match the interface of LinearSolve.jl.
8383
- [Preconditioners.CholeskyPreconditioner(A, i)](https://github.com/JuliaLinearAlgebra/Preconditioners.jl):
8484
An incomplete Cholesky preconditioner with cut-off level `i`. Requires `A` as
8585
a `AbstractMatrix` and positive semi-definite.
86-
- [AlgebraicMultiGrid](https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl):
86+
- [AlgebraicMultigrid](https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl):
8787
Implementations of the algebraic multigrid method. Must be converted to a
88-
preconditioner via `AlgebraicMultiGrid.aspreconditioner(AlgebraicMultiGrid.precmethod(A))`.
88+
preconditioner via `AlgebraicMultigrid.aspreconditioner(AlgebraicMultigrid.precmethod(A))`.
8989
Requires `A` as a `AbstractMatrix`. Provides the following methods:
9090

91-
+ `AlgebraicMultiGrid.ruge_stuben(A)`
92-
+ `AlgebraicMultiGrid.smoothed_aggregation(A)`
91+
+ `AlgebraicMultigrid.ruge_stuben(A)`
92+
+ `AlgebraicMultigrid.smoothed_aggregation(A)`
9393
- [PyAMG](https://github.com/cortner/PyAMG.jl):
9494
Implementations of the algebraic multigrid method. Must be converted to a
9595
preconditioner via `PyAMG.aspreconditioner(PyAMG.precmethod(A))`.
@@ -111,3 +111,9 @@ The following preconditioners match the interface of LinearSolve.jl.
111111
preconditioners which supports distributed computing via MPI. These can be
112112
written using the LinearSolve.jl interface choosing algorithms like `HYPRE.ILU`
113113
and `HYPRE.BoomerAMG`.
114+
- [KrylovPreconditioners.jl](https://github.com/JuliaSmoothOptimizers/KrylovPreconditioners.jl/): Provides GPU-ready
115+
preconditioners via KernelAbstractions.jl. At the time of writing the package provides the following methods:
116+
117+
+ Incomplete Cholesky decomposition `KrylovPreconditioners.kp_ic0(A)`
118+
+ Incomplete LU decomposition `KrylovPreconditioners.kp_ilu0(A)`
119+
+ Block Jacobi `KrylovPreconditioners.BlockJacobiPreconditioner(A, nblocks, device)`

0 commit comments

Comments
 (0)