Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Solvers with KrylovJL fail #158

Closed
DanielVandH opened this issue Feb 27, 2023 · 2 comments
Closed

Solvers with KrylovJL fail #158

DanielVandH opened this issue Feb 27, 2023 · 2 comments

Comments

@DanielVandH
Copy link
Member

Should the code below be expected to work?

using OrdinaryDiffEq, LinearSolve, Krylov, NonlinearSolve
function lorenz!(du,u,p,t)
    @show t
 du[1] = 10.0*(u[2]-u[1])
 du[2] = u[1]*(28.0-u[3]) - u[2]
 du[3] = u[1]*u[2] - (8/3)*u[3]
end
u0 = [1.0;0.0;0.0]
tspan = (0.0,100.0)
prob = ODEProblem(lorenz!,u0,tspan) |> NonlinearProblem
alg = NewtonRaphson(linsolve=KrylovJL_GMRES())
sol = solve(prob, alg)
ERROR: MethodError: no method matching forwarddiff_color_jacobian!(::Matrix{Float64}, ::NonlinearSolve.JacobianWrapper{NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, SciMLBase.NullParameters}, ::Vector{Float64}, ::Nothing)

Some of the types have been truncated in the stacktrace for improved reading. To emit complete information
in the stack trace, evaluate `TruncatedStacktraces.VERBOSE[] = true` and re-run the code.

  [6] #solve_call#22
    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:509 [inlined]
  [7] solve_call
    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:479 [inlined]
  [8] #solve_up#29    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:940 [inlined]  [9] solve_up    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:905 [inlined]
 [10] #solve#28
    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:899 [inlined] [11] solve(prob::NonlinearProblem{Vector{Float64}, true, SciMLBase.NullParameters, NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardNonlinearProblem}, args::NewtonRaphson{0, true, Val{:forward}, KrylovJL{typeof(gmres!), Int64, Tuple{}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, typeof(NonlinearSolve.DEFAULT_PRECS), true, nothing})    @ DiffEqBase C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:889
 [12] top-level scope
    @ Untitled-1:12

If instead autodiff = false:

alg = NewtonRaphson(linsolve=KrylovJL_GMRES(), autodiff = false)
sol = solve(prob, alg)
ERROR: MethodError: no method matching default_relstep(::Nothing, ::Type{Float64})

Some of the types have been truncated in the stacktrace for improved reading. To emit complete information
in the stack trace, evaluate `TruncatedStacktraces.VERBOSE[] = true` and re-run the code.

Closest candidates are:
  default_relstep(::Type, ::Any) at C:\Users\User\.julia\packages\FiniteDiff\e7xnl\src\epsilons.jl:25
  default_relstep(::Val{fdtype}, ::Type{T}) where {fdtype, T<:Number} at C:\Users\User\.julia\packages\FiniteDiff\e7xnl\src\epsilons.jl:26
Stacktrace:
  [1] finite_difference_jacobian!(J::Matrix{Float64}, f::NonlinearSolve.JacobianWrapper{NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, SciMLBase.NullParameters}, x::Vector{Float64}, fdtype::Nothing, returntype::Vector{Float64}, f_in::Nothing) (repeats 2 times)
    @ FiniteDiff C:\Users\User\.julia\packages\FiniteDiff\e7xnl\src\jacobians.jl:298
  [2] jacobian_finitediff_forward!(J::Matrix{Float64}, f::NonlinearSolve.JacobianWrapper{NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, SciMLBase.NullParameters}, x::Vector{Float64}, jac_config::Nothing, forwardcache::Vector{Float64}, cache::NonlinearSolve.NewtonRaphsonCache{true, NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, NewtonRaphson{0, false, Val{:forward}, KrylovJL{typeof(gmres!), Int64, Tuple{}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, typeof(NonlinearSolve.DEFAULT_PRECS), true, nothing}, Vector{Float64}, Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, typeof(NonlinearSolve.DEFAULT_NORM), Float64, NonlinearProblem{Vector{Float64}, true, SciMLBase.NullParameters, NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardNonlinearProblem}, NonlinearSolve.JacobianWrapper{NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, SciMLBase.NullParameters}, LinearSolve.LinearCache{Matrix{Float64}, Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, KrylovJL{typeof(gmres!), Int64, Tuple{}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, GmresSolver{Float64, Float64, Vector{Float64}}, LinearSolve.InvPreconditioner{LinearAlgebra.Diagonal{Float64, Vector{Float64}}}, LinearAlgebra.Diagonal{Float64, Vector{Float64}}, Float64, true}, Matrix{Float64}, Nothing})
    @ NonlinearSolve C:\Users\User\.julia\packages\NonlinearSolve\Da5qG\src\jacobian.jl:19
  [3] jacobian!(J::Matrix{Float64}, cache::NonlinearSolve.NewtonRaphsonCache{true, NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, NewtonRaphson{0, false, Val{:forward}, KrylovJL{typeof(gmres!), Int64, Tuple{}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, typeof(NonlinearSolve.DEFAULT_PRECS), true, nothing}, Vector{Float64}, Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, typeof(NonlinearSolve.DEFAULT_NORM), Float64, NonlinearProblem{Vector{Float64}, true, SciMLBase.NullParameters, NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardNonlinearProblem}, NonlinearSolve.JacobianWrapper{NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, SciMLBase.NullParameters}, LinearSolve.LinearCache{Matrix{Float64}, Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, KrylovJL{typeof(gmres!), Int64, Tuple{}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, GmresSolver{Float64, Float64, Vector{Float64}}, LinearSolve.InvPreconditioner{LinearAlgebra.Diagonal{Float64, Vector{Float64}}}, LinearAlgebra.Diagonal{Float64, Vector{Float64}}, Float64, true}, Matrix{Float64}, Nothing})
    @ NonlinearSolve C:\Users\User\.julia\packages\NonlinearSolve\Da5qG\src\jacobian.jl:45
  [4] perform_step!(cache::NonlinearSolve.NewtonRaphsonCache{true, NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, NewtonRaphson{0, false, Val{:forward}, KrylovJL{typeof(gmres!), Int64, Tuple{}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, typeof(NonlinearSolve.DEFAULT_PRECS), true, nothing}, Vector{Float64}, Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, typeof(NonlinearSolve.DEFAULT_NORM), Float64, NonlinearProblem{Vector{Float64}, true, SciMLBase.NullParameters, NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardNonlinearProblem}, NonlinearSolve.JacobianWrapper{NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, SciMLBase.NullParameters}, LinearSolve.LinearCache{Matrix{Float64}, Vector{Float64}, Vector{Float64}, SciMLBase.NullParameters, KrylovJL{typeof(gmres!), Int64, Tuple{}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, GmresSolver{Float64, Float64, Vector{Float64}}, LinearSolve.InvPreconditioner{LinearAlgebra.Diagonal{Float64, Vector{Float64}}}, LinearAlgebra.Diagonal{Float64, Vector{Float64}}, Float64, true}, Matrix{Float64}, Nothing})
    @ NonlinearSolve C:\Users\User\.julia\packages\NonlinearSolve\Da5qG\src\raphson.jl:160
  [5] solve!
    @ C:\Users\User\.julia\packages\NonlinearSolve\Da5qG\src\raphson.jl:188 [inlined]
  [6] #__solve#1
    @ C:\Users\User\.julia\packages\NonlinearSolve\Da5qG\src\NonlinearSolve.jl:31 [inlined]
  [7] __solve
    @ C:\Users\User\.julia\packages\NonlinearSolve\Da5qG\src\NonlinearSolve.jl:27 [inlined]
  [8] #solve_call#22
    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:509 [inlined]
  [9] solve_call
    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:479 [inlined]
 [10] #solve_up#29
    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:940 [inlined]
 [11] solve_up
    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:905 [inlined]
 [12] #solve#28
    @ C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:899 [inlined]
 [13] solve(prob::NonlinearProblem{Vector{Float64}, true, SciMLBase.NullParameters, NonlinearFunction{true,SciMLBase.AutoSpecialize,…}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardNonlinearProblem}, args::NewtonRaphson{0, false, Val{:forward}, KrylovJL{typeof(gmres!), Int64, Tuple{}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, typeof(NonlinearSolve.DEFAULT_PRECS), true, nothing})
    @ DiffEqBase C:\Users\User\.julia\packages\DiffEqBase\JH4gt\src\solve.jl:889
 [14] top-level scope
    @ Untitled-1:12

The issue in the latter case seems to be from the jac_config field in the cache being empty https://github.com/SciML/NonlinearSolve.jl/blob/master/src/jacobian.jl#L27.

These errors also occur with TrustRegion. Seems to be fine with e.g. DynamicSS(TRBDF2(linsolve=KrylovJL_GMRES()))) from SteadyStateDiffEq.

@ChrisRackauckas
Copy link
Member

I hadn't gotten to optimizing the Krylov setup yet since indeed they need a few things to be different from the direct methods. See #140 . Though I am a bit surprised to see them fail. But yes in general Krylov isn't ready here yet, but it's not too far off.

@ChrisRackauckas
Copy link
Member

Handled in #203

avik-pal pushed a commit that referenced this issue Nov 1, 2024
Return InitialFailure from bracketing methods if not enclosing interval
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants