diff --git a/.JuliaFormatter.toml b/.JuliaFormatter.toml index 9c7935911..320e0c073 100644 --- a/.JuliaFormatter.toml +++ b/.JuliaFormatter.toml @@ -1,2 +1,3 @@ style = "sciml" -format_markdown = true \ No newline at end of file +format_markdown = true +annotate_untyped_fields_with_any = false diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index cf1105bad..75f12a2e9 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -15,9 +15,8 @@ jobs: - Core version: - '1' - - '1.6' steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - uses: julia-actions/setup-julia@v1 with: version: ${{ matrix.version }} diff --git a/.github/workflows/Documentation.yml b/.github/workflows/Documentation.yml index fe3c958eb..6a08fca1a 100644 --- a/.github/workflows/Documentation.yml +++ b/.github/workflows/Documentation.yml @@ -12,7 +12,7 @@ jobs: build: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - uses: julia-actions/setup-julia@latest with: version: '1' diff --git a/.github/workflows/Downstream.yml b/.github/workflows/Downstream.yml index 0d2a213b4..a7fe43d4b 100644 --- a/.github/workflows/Downstream.yml +++ b/.github/workflows/Downstream.yml @@ -14,21 +14,21 @@ jobs: strategy: fail-fast: false matrix: - julia-version: [1,1.6] + julia-version: [1] os: [ubuntu-latest] package: - {user: SciML, repo: ModelingToolkit.jl, group: All} - {user: SciML, repo: OrdinaryDiffEq.jl, group: Interface} - {user: SciML, repo: OrdinaryDiffEq.jl, group: Regression} steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - uses: julia-actions/setup-julia@v1 with: version: ${{ matrix.julia-version }} arch: x64 - uses: julia-actions/julia-buildpkg@latest - name: Clone Downstream - uses: actions/checkout@v3 + uses: actions/checkout@v4 with: repository: ${{ matrix.package.user }}/${{ matrix.package.repo }} path: downstream diff --git a/.github/workflows/FormatCheck.yml b/.github/workflows/FormatCheck.yml index f80d0b18b..dd551501c 100644 --- a/.github/workflows/FormatCheck.yml +++ b/.github/workflows/FormatCheck.yml @@ -21,7 +21,7 @@ jobs: with: version: ${{ matrix.julia-version }} - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - name: Install JuliaFormatter and format # This will use the latest version by default but you can set the version like so: # diff --git a/.github/workflows/Invalidations.yml b/.github/workflows/Invalidations.yml index 4d0004e83..28b9ce2fa 100644 --- a/.github/workflows/Invalidations.yml +++ b/.github/workflows/Invalidations.yml @@ -19,12 +19,12 @@ jobs: - uses: julia-actions/setup-julia@v1 with: version: '1' - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - uses: julia-actions/julia-buildpkg@v1 - uses: julia-actions/julia-invalidations@v1 id: invs_pr - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 with: ref: ${{ github.event.repository.default_branch }} - uses: julia-actions/julia-buildpkg@v1 diff --git a/.gitignore b/.gitignore index aa4ff57e3..2f8d95920 100644 --- a/.gitignore +++ b/.gitignore @@ -25,3 +25,4 @@ Manifest.toml docs/src/assets/Project.toml .vscode +wip diff --git a/Project.toml b/Project.toml index ed0b27f95..4d474db44 100644 --- a/Project.toml +++ b/Project.toml @@ -1,14 +1,17 @@ name = "NonlinearSolve" uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" authors = ["SciML"] -version = "1.10.0" +version = "2.0.0" [deps] +ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b" ArrayInterface = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" +ConcreteStructs = "2569d6c7-a4a2-43d3-a901-331e8e4be471" DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e" EnumX = "4e289a0a-7415-4d19-859d-a7e5c4648b56" FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" +LineSearches = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" LinearSolve = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a" @@ -22,33 +25,41 @@ StaticArraysCore = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" UnPack = "3a884ed6-31ef-47d7-9d2a-63182c4928ed" [compat] +ADTypes = "0.2" ArrayInterface = "6.0.24, 7" -DiffEqBase = "6" +ConcreteStructs = "0.2" +DiffEqBase = "6.130" EnumX = "1" +Enzyme = "0.11" FiniteDiff = "2" ForwardDiff = "0.10.3" LinearSolve = "2" +LineSearches = "7" PrecompileTools = "1" RecursiveArrayTools = "2" Reexport = "0.2, 1" -SciMLBase = "1.92.4" +SciMLBase = "1.97" SimpleNonlinearSolve = "0.1" -SparseDiffTools = "1, 2" +SparseDiffTools = "2.6" StaticArraysCore = "1.4" UnPack = "1.0" -julia = "1.6" +Zygote = "0.6" +julia = "1.9" [extras] BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" +Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" LinearSolve = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f" +SparseDiffTools = "47a9eef4-7e08-11e9-0b38-333d64bd3804" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" +Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [targets] -test = ["BenchmarkTools", "SafeTestsets", "Pkg", "Test", "ForwardDiff", "StaticArrays", "Symbolics", "LinearSolve", "Random", "LinearAlgebra"] +test = ["Enzyme", "BenchmarkTools", "SafeTestsets", "Pkg", "Test", "ForwardDiff", "StaticArrays", "Symbolics", "LinearSolve", "Random", "LinearAlgebra", "Zygote", "SparseDiffTools"] diff --git a/docs/Project.toml b/docs/Project.toml index f6889de90..df765bb1d 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -14,7 +14,7 @@ Sundials = "c3572dad-4567-51f8-b174-8c6c989267f4" BenchmarkTools = "1" Documenter = "0.27" LinearSolve = "2" -NonlinearSolve = "1" +NonlinearSolve = "1, 2" NonlinearSolveMINPACK = "0.1" SciMLNLSolve = "0.1" SimpleNonlinearSolve = "0.1.5" diff --git a/docs/src/tutorials/nonlinear.md b/docs/src/tutorials/nonlinear.md index 6404d2226..2a1ced12f 100644 --- a/docs/src/tutorials/nonlinear.md +++ b/docs/src/tutorials/nonlinear.md @@ -21,15 +21,25 @@ AbstractArray for automatic differentiation. ## Using Bracketing Methods -For scalar rootfinding problems, bracketing methods exist. In this case, one passes +For scalar rootfinding problems, bracketing methods exist in `SimpleNonlinearSolve`. In this case, one passes a bracket instead of an initial condition, for example: ```@example -using NonlinearSolve +using SimpleNonlinearSolve f(u, p) = u * u - 2.0 uspan = (1.0, 2.0) # brackets probB = IntervalNonlinearProblem(f, uspan) -sol = solve(probB, Falsi()) +sol = solve(probB, ITP()) +``` + +The user can also set a tolerance that suits the application. + +```@example +using SimpleNonlinearSolve +f(u, p) = u * u - 2.0 +uspan = (1.0, 2.0) # brackets +probB = IntervalNonlinearProblem(f, uspan) +sol = solve(probB, ITP(), abstol = 0.01) ``` ## Using Jacobian Free Newton Krylov (JNFK) Methods diff --git a/src/NonlinearSolve.jl b/src/NonlinearSolve.jl index cae730bc3..6dcef7b23 100644 --- a/src/NonlinearSolve.jl +++ b/src/NonlinearSolve.jl @@ -1,42 +1,65 @@ module NonlinearSolve -if isdefined(Base, :Experimental) && - isdefined(Base.Experimental, Symbol("@max_methods")) + +if isdefined(Base, :Experimental) && isdefined(Base.Experimental, Symbol("@max_methods")) @eval Base.Experimental.@max_methods 1 end -using Reexport -using UnPack: @unpack -using FiniteDiff, ForwardDiff -using ForwardDiff: Dual -using LinearAlgebra -using StaticArraysCore -using RecursiveArrayTools -import EnumX -import ArrayInterface -import LinearSolve -using DiffEqBase -using SparseDiffTools - -@reexport using SciMLBase -using SciMLBase: NLStats -@reexport using SimpleNonlinearSolve - -import SciMLBase: _unwrap_val - -abstract type AbstractNonlinearSolveAlgorithm <: SciMLBase.AbstractNonlinearAlgorithm end -abstract type AbstractNewtonAlgorithm{CS, AD, FDT, ST, CJ} <: - AbstractNonlinearSolveAlgorithm end - -function SciMLBase.__solve(prob::NonlinearProblem, - alg::AbstractNonlinearSolveAlgorithm, args...; - kwargs...) + +using DiffEqBase, LinearAlgebra, LinearSolve, SparseDiffTools +import ForwardDiff + +import ADTypes: AbstractFiniteDifferencesMode +import ArrayInterface: undefmatrix, matrix_colors, parameterless_type, ismutable +import ConcreteStructs: @concrete +import EnumX: @enumx +import ForwardDiff: Dual +import LinearSolve: ComposePreconditioner, InvPreconditioner, needs_concrete_A +import RecursiveArrayTools: ArrayPartition, + AbstractVectorOfArray, recursivecopy!, recursivefill! +import Reexport: @reexport +import SciMLBase: AbstractNonlinearAlgorithm, NLStats, _unwrap_val, has_jac, isinplace +import StaticArraysCore: StaticArray, SVector, SArray, MArray +import UnPack: @unpack + +@reexport using ADTypes, LineSearches, SciMLBase, SimpleNonlinearSolve + +const AbstractSparseADType = Union{ADTypes.AbstractSparseFiniteDifferences, + ADTypes.AbstractSparseForwardMode, ADTypes.AbstractSparseReverseMode} + +abstract type AbstractNonlinearSolveAlgorithm <: AbstractNonlinearAlgorithm end +abstract type AbstractNewtonAlgorithm{CJ, AD} <: AbstractNonlinearSolveAlgorithm end + +abstract type AbstractNonlinearSolveCache{iip} end + +isinplace(::AbstractNonlinearSolveCache{iip}) where {iip} = iip + +function SciMLBase.__solve(prob::NonlinearProblem, alg::AbstractNonlinearSolveAlgorithm, + args...; kwargs...) cache = init(prob, alg, args...; kwargs...) - sol = solve!(cache) + return solve!(cache) +end + +function SciMLBase.solve!(cache::AbstractNonlinearSolveCache) + while !cache.force_stop && cache.stats.nsteps < cache.maxiters + perform_step!(cache) + cache.stats.nsteps += 1 + end + + if cache.stats.nsteps == cache.maxiters + cache.retcode = ReturnCode.MaxIters + else + cache.retcode = ReturnCode.Success + end + + return SciMLBase.build_solution(cache.prob, cache.alg, cache.u, cache.fu1; + cache.retcode, cache.stats) end include("utils.jl") +include("linesearch.jl") include("raphson.jl") include("trustRegion.jl") include("levenberg.jl") +include("gaussnewton.jl") include("jacobian.jl") include("ad.jl") @@ -46,7 +69,7 @@ PrecompileTools.@compile_workload begin for T in (Float32, Float64) prob = NonlinearProblem{false}((u, p) -> u .* u .- p, T(0.1), T(2)) - precompile_algs = if VERSION >= v"1.7" + precompile_algs = if VERSION ≥ v"1.7" (NewtonRaphson(), TrustRegion(), LevenbergMarquardt()) else (NewtonRaphson(),) @@ -66,6 +89,8 @@ end export RadiusUpdateSchemes -export NewtonRaphson, TrustRegion, LevenbergMarquardt +export NewtonRaphson, TrustRegion, LevenbergMarquardt, GaussNewton + +export LineSearch end # module diff --git a/src/ad.jl b/src/ad.jl index 0dad74c56..05fd8bfa9 100644 --- a/src/ad.jl +++ b/src/ad.jl @@ -1,44 +1,63 @@ function scalar_nlsolve_ad(prob, alg, args...; kwargs...) f = prob.f p = value(prob.p) - u0 = value(prob.u0) newprob = NonlinearProblem(f, u0, p; prob.kwargs...) sol = solve(newprob, alg, args...; kwargs...) uu = sol.u - if p isa Number - f_p = ForwardDiff.derivative(Base.Fix1(f, uu), p) - else - f_p = ForwardDiff.gradient(Base.Fix1(f, uu), p) - end + f_p = scalar_nlsolve_∂f_∂p(f, uu, p) + f_x = scalar_nlsolve_∂f_∂u(f, uu, p) + + z_arr = -inv(f_x) * f_p - f_x = ForwardDiff.derivative(Base.Fix2(f, p), uu) pp = prob.p - sumfun = let f_x′ = -f_x - ((fp, p),) -> (fp / f_x′) * ForwardDiff.partials(p) + sumfun = ((z, p),) -> map(zᵢ -> zᵢ * ForwardDiff.partials(p), z) + if uu isa Number + partials = sum(sumfun, zip(z_arr, pp)) + elseif p isa Number + partials = sumfun((z_arr, pp)) + else + partials = sum(sumfun, zip(eachcol(z_arr), pp)) end - partials = sum(sumfun, zip(f_p, pp)) + return sol, partials end -function SciMLBase.solve(prob::NonlinearProblem{<:Union{Number, StaticArraysCore.SVector}, - iip, - <:Dual{T, V, P}}, - alg::AbstractNewtonAlgorithm, - args...; kwargs...) where {iip, T, V, P} +function SciMLBase.solve(prob::NonlinearProblem{<:Union{Number, SVector, <:AbstractArray}, + iip, <:Dual{T, V, P}}, alg::AbstractNewtonAlgorithm, args...; + kwargs...) where {iip, T, V, P} sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) - return SciMLBase.build_solution(prob, alg, Dual{T, V, P}(sol.u, partials), sol.resid; - retcode = sol.retcode) + dual_soln = scalar_nlsolve_dual_soln(sol.u, partials, prob.p) + return SciMLBase.build_solution(prob, alg, dual_soln, sol.resid; sol.retcode) end -function SciMLBase.solve(prob::NonlinearProblem{<:Union{Number, StaticArraysCore.SVector}, - iip, - <:AbstractArray{<:Dual{T, V, P}}}, - alg::AbstractNewtonAlgorithm, - args...; + +function SciMLBase.solve(prob::NonlinearProblem{<:Union{Number, SVector, <:AbstractArray}, + iip, <:AbstractArray{<:Dual{T, V, P}}}, alg::AbstractNewtonAlgorithm, args...; kwargs...) where {iip, T, V, P} sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) - return SciMLBase.build_solution(prob, alg, Dual{T, V, P}(sol.u, partials), sol.resid; - retcode = sol.retcode) + dual_soln = scalar_nlsolve_dual_soln(sol.u, partials, prob.p) + return SciMLBase.build_solution(prob, alg, dual_soln, sol.resid; sol.retcode) +end + +function scalar_nlsolve_∂f_∂p(f, u, p) + ff = p isa Number ? ForwardDiff.derivative : + (u isa Number ? ForwardDiff.gradient : ForwardDiff.jacobian) + return ff(Base.Fix1(f, u), p) +end + +function scalar_nlsolve_∂f_∂u(f, u, p) + ff = u isa Number ? ForwardDiff.derivative : ForwardDiff.jacobian + return ff(Base.Fix2(f, p), u) +end + +function scalar_nlsolve_dual_soln(u::Number, partials, + ::Union{<:AbstractArray{<:Dual{T, V, P}}, Dual{T, V, P}}) where {T, V, P} + return Dual{T, V, P}(u, partials) +end + +function scalar_nlsolve_dual_soln(u::AbstractArray, partials, + ::Union{<:AbstractArray{<:Dual{T, V, P}}, Dual{T, V, P}}) where {T, V, P} + return map(((uᵢ, pᵢ),) -> Dual{T, V, P}(uᵢ, pᵢ), zip(u, partials)) end diff --git a/src/gaussnewton.jl b/src/gaussnewton.jl new file mode 100644 index 000000000..88d0bb2a4 --- /dev/null +++ b/src/gaussnewton.jl @@ -0,0 +1,160 @@ +""" + GaussNewton(; concrete_jac = nothing, linsolve = nothing, + precs = DEFAULT_PRECS, adkwargs...) + +An advanced GaussNewton implementation with support for efficient handling of sparse +matrices via colored automatic differentiation and preconditioned linear solvers. Designed +for large-scale and numerically-difficult nonlinear least squares problems. + +!!! note + In most practical situations, users should prefer using `LevenbergMarquardt` instead! It + is a more general extension of `Gauss-Newton` Method. + +### Keyword Arguments + + - `autodiff`: determines the backend used for the Jacobian. Note that this argument is + ignored if an analytical Jacobian is passed, as that will be used instead. Defaults to + `AutoForwardDiff()`. Valid choices are types from ADTypes.jl. + - `concrete_jac`: whether to build a concrete Jacobian. If a Krylov-subspace method is used, + then the Jacobian will not be constructed and instead direct Jacobian-vector products + `J*v` are computed using forward-mode automatic differentiation or finite differencing + tricks (without ever constructing the Jacobian). However, if the Jacobian is still needed, + for example for a preconditioner, `concrete_jac = true` can be passed in order to force + the construction of the Jacobian. + - `linsolve`: the [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) used for the + linear solves within the Newton method. Defaults to `nothing`, which means it uses the + LinearSolve.jl default algorithm choice. For more information on available algorithm + choices, see the [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). + - `precs`: the choice of preconditioners for the linear solver. Defaults to using no + preconditioners. For more information on specifying preconditioners for LinearSolve + algorithms, consult the + [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). +""" +@concrete struct GaussNewton{CJ, AD} <: AbstractNewtonAlgorithm{CJ, AD} + ad::AD + linsolve + precs +end + +function GaussNewton(; concrete_jac = nothing, linsolve = NormalCholeskyFactorization(), + precs = DEFAULT_PRECS, adkwargs...) + ad = default_adargs_to_adtype(; adkwargs...) + return GaussNewton{_unwrap_val(concrete_jac)}(ad, linsolve, precs) +end + +@concrete mutable struct GaussNewtonCache{iip} <: AbstractNonlinearSolveCache{iip} + f + alg + u + fu1 + fu2 + fu_new + du + p + uf + linsolve + J + JᵀJ + Jᵀf + jac_cache + force_stop + maxiters::Int + internalnorm + retcode::ReturnCode.T + abstol + prob + stats::NLStats +end + +function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::GaussNewton, + args...; alias_u0 = false, maxiters = 1000, abstol = 1e-6, internalnorm = DEFAULT_NORM, + kwargs...) where {uType, iip} + @unpack f, u0, p = prob + u = alias_u0 ? u0 : deepcopy(u0) + if iip + fu1 = f.resid_prototype === nothing ? zero(u) : f.resid_prototype + f(fu1, u, p) + else + fu1 = f(u, p) + end + uf, linsolve, J, fu2, jac_cache, du = jacobian_caches(alg, f, u, p, Val(iip)) + + JᵀJ = J isa Number ? zero(J) : similar(J, size(J, 2), size(J, 2)) + Jᵀf = zero(u) + + return GaussNewtonCache{iip}(f, alg, u, fu1, fu2, zero(fu1), du, p, uf, linsolve, J, + JᵀJ, Jᵀf, jac_cache, false, maxiters, internalnorm, ReturnCode.Default, abstol, + prob, NLStats(1, 0, 0, 0, 0)) +end + +function perform_step!(cache::GaussNewtonCache{true}) + @unpack u, fu1, f, p, alg, J, JᵀJ, Jᵀf, linsolve, du = cache + jacobian!!(J, cache) + mul!(JᵀJ, J', J) + mul!(Jᵀf, J', fu1) + + # u = u - J \ fu + linres = dolinsolve(alg.precs, linsolve; A = JᵀJ, b = _vec(Jᵀf), linu = _vec(du), + p, reltol = cache.abstol) + cache.linsolve = linres.cache + @. u = u - du + f(cache.fu_new, u, p) + + (cache.internalnorm(cache.fu_new .- cache.fu1) < cache.abstol || + cache.internalnorm(cache.fu_new) < cache.abstol) && + (cache.force_stop = true) + cache.fu1 .= cache.fu_new + cache.stats.nf += 1 + cache.stats.njacs += 1 + cache.stats.nsolve += 1 + cache.stats.nfactors += 1 + return nothing +end + +function perform_step!(cache::GaussNewtonCache{false}) + @unpack u, fu1, f, p, alg, linsolve = cache + + cache.J = jacobian!!(cache.J, cache) + cache.JᵀJ = cache.J' * cache.J + cache.Jᵀf = cache.J' * fu1 + # u = u - J \ fu + if linsolve === nothing + cache.du = fu1 / cache.J + else + linres = dolinsolve(alg.precs, linsolve; A = cache.JᵀJ, b = _vec(cache.Jᵀf), + linu = _vec(cache.du), p, reltol = cache.abstol) + cache.linsolve = linres.cache + end + cache.u = @. u - cache.du # `u` might not support mutation + cache.fu_new = f(cache.u, p) + + (cache.internalnorm(cache.fu_new .- cache.fu1) < cache.abstol || + cache.internalnorm(cache.fu_new) < cache.abstol) && + (cache.force_stop = true) + cache.fu1 = cache.fu_new + cache.stats.nf += 1 + cache.stats.njacs += 1 + cache.stats.nsolve += 1 + cache.stats.nfactors += 1 + return nothing +end + +function SciMLBase.reinit!(cache::GaussNewtonCache{iip}, u0 = cache.u; p = cache.p, + abstol = cache.abstol, maxiters = cache.maxiters) where {iip} + cache.p = p + if iip + recursivecopy!(cache.u, u0) + cache.f(cache.fu1, cache.u, p) + else + # don't have alias_u0 but cache.u is never mutated for OOP problems so it doesn't matter + cache.u = u0 + cache.fu1 = cache.f(cache.u, p) + end + cache.abstol = abstol + cache.maxiters = maxiters + cache.stats.nf = 1 + cache.stats.nsteps = 1 + cache.force_stop = false + cache.retcode = ReturnCode.Default + return cache +end diff --git a/src/jacobian.jl b/src/jacobian.jl index 8296069e0..83d26fee6 100644 --- a/src/jacobian.jl +++ b/src/jacobian.jl @@ -1,185 +1,107 @@ -struct JacobianWrapper{fType, pType} - f::fType - p::pType +@concrete struct JacobianWrapper{iip} + f + p end -(uf::JacobianWrapper)(u) = uf.f(u, uf.p) -(uf::JacobianWrapper)(res, u) = uf.f(res, u, uf.p) +# Previous Implementation did not hold onto `iip`, but this causes problems in packages +# where we check for the presence of function signatures to check which dispatch to call +(uf::JacobianWrapper{false})(u) = uf.f(u, uf.p) +(uf::JacobianWrapper{false})(res, u) = (vec(res) .= vec(uf.f(u, uf.p))) +(uf::JacobianWrapper{true})(res, u) = uf.f(res, u, uf.p) -struct NonlinearSolveTag end - -function sparsity_colorvec(f, x) - sparsity = f.sparsity - colorvec = DiffEqBase.has_colorvec(f) ? f.colorvec : - (isnothing(sparsity) ? (1:length(x)) : matrix_colors(sparsity)) - sparsity, colorvec -end +sparsity_detection_alg(_, _) = NoSparsityDetection() +function sparsity_detection_alg(f, ad::AbstractSparseADType) + if f.sparsity === nothing + if f.jac_prototype === nothing + return SymbolicsSparsityDetection() + else + jac_prototype = f.jac_prototype + end + else + jac_prototype = f.sparsity + end -function jacobian_finitediff_forward!(J, f, x, jac_config, forwardcache, cache) - (FiniteDiff.finite_difference_jacobian!(J, f, x, jac_config, forwardcache); - maximum(jac_config.colorvec)) -end -function jacobian_finitediff!(J, f, x, jac_config, cache) - (FiniteDiff.finite_difference_jacobian!(J, f, x, jac_config); - 2 * maximum(jac_config.colorvec)) + if SciMLBase.has_colorvec(f) + return PrecomputedJacobianColorvec(; jac_prototype, f.colorvec, + partition_by_rows = ad isa ADTypes.AbstractSparseReverseMode) + else + return JacPrototypeSparsityDetection(; jac_prototype) + end end # NoOp for Jacobian if it is not a Abstract Array -- For eg, JacVec Operator -jacobian!(J, cache) = J -function jacobian!(J::AbstractMatrix{<:Number}, cache) - f = cache.f - uf = cache.uf - x = cache.u - fx = cache.fu - jac_config = cache.jac_config - alg = cache.alg - - if SciMLBase.has_jac(f) - f.jac(J, x, cache.p) - elseif alg_autodiff(alg) - forwarddiff_color_jacobian!(J, uf, x, jac_config) - #cache.destats.nf += 1 +jacobian!!(J, _) = J +# `!!` notation is from BangBang.jl since J might be jacobian in case of oop `f.jac` +# and we don't want wasteful `copyto!` +function jacobian!!(J::Union{AbstractMatrix{<:Number}, Nothing}, cache) + @unpack f, uf, u, p, jac_cache, alg, fu2 = cache + iip = isinplace(cache) + if iip + has_jac(f) ? f.jac(J, u, p) : + sparse_jacobian!(J, alg.ad, jac_cache, uf, fu2, _maybe_mutable(u, alg.ad)) else - isforward = alg_difftype(alg) === Val{:forward} - if isforward - uf(fx, x) - #cache.destats.nf += 1 - tmp = jacobian_finitediff_forward!(J, uf, x, jac_config, fx, - cache) - else # not forward difference - tmp = jacobian_finitediff!(J, uf, x, jac_config, cache) - end - #cache.destats.nf += tmp + return has_jac(f) ? f.jac(u, p) : + sparse_jacobian!(J, alg.ad, jac_cache, uf, _maybe_mutable(u, alg.ad)) end - nothing + return J end +# Scalar case +jacobian!!(::Number, cache) = last(value_derivative(cache.uf, cache.u)) + +# Build Jacobian Caches +function jacobian_caches(alg::AbstractNonlinearSolveAlgorithm, f, u, p, ::Val{iip}; + linsolve_kwargs=(;)) where {iip} + uf = JacobianWrapper{iip}(f, p) -function build_jac_and_jac_config(alg, f::F1, uf::F2, du1, u, tmp, du2) where {F1, F2} haslinsolve = hasfield(typeof(alg), :linsolve) - has_analytic_jac = SciMLBase.has_jac(f) + has_analytic_jac = has_jac(f) linsolve_needs_jac = (concrete_jac(alg) === nothing && (!haslinsolve || (haslinsolve && (alg.linsolve === nothing || - LinearSolve.needs_concrete_A(alg.linsolve))))) + needs_concrete_A(alg.linsolve))))) alg_wants_jac = (concrete_jac(alg) !== nothing && concrete_jac(alg)) + # NOTE: The deepcopy is needed here since we are using the resid_prototype elsewhere + fu = f.resid_prototype === nothing ? (iip ? _mutable_zero(u) : _mutable(f(u, p))) : + (iip ? deepcopy(f.resid_prototype) : f.resid_prototype) if !has_analytic_jac && (linsolve_needs_jac || alg_wants_jac) - sparsity, colorvec = sparsity_colorvec(f, u) - - if alg_autodiff(alg) - _chunksize = get_chunksize(alg) === Val(0) ? nothing : get_chunksize(alg) # SparseDiffEq uses different convection... - - T = if standardtag(alg) - typeof(ForwardDiff.Tag(NonlinearSolveTag(), eltype(u))) - else - typeof(ForwardDiff.Tag(uf, eltype(u))) - end - jac_config = ForwardColorJacCache(uf, u, _chunksize; colorvec, sparsity, - tag = T) - else - if alg_difftype(alg) !== Val{:complex} - jac_config = FiniteDiff.JacobianCache(tmp, du1, du2, alg_difftype(alg); - colorvec, sparsity) - else - jac_config = FiniteDiff.JacobianCache(Complex{eltype(tmp)}.(tmp), - Complex{eltype(du1)}.(du1), nothing, alg_difftype(alg), eltype(u); - colorvec, sparsity) - end - end + sd = sparsity_detection_alg(f, alg.ad) + ad = alg.ad + jac_cache = iip ? sparse_jacobian_cache(ad, sd, uf, fu, _maybe_mutable(u, ad)) : + sparse_jacobian_cache(ad, sd, uf, _maybe_mutable(u, ad); fx = fu) else - jac_config = nothing + jac_cache = nothing end J = if !linsolve_needs_jac # We don't need to construct the Jacobian - JacVec(uf, u; autodiff = alg_autodiff(alg) ? AutoForwardDiff() : AutoFiniteDiff()) + JacVec(uf, u; autodiff = alg.ad) else - if f.jac_prototype === nothing - ArrayInterface.undefmatrix(u) + if has_analytic_jac + f.jac_prototype === nothing ? undefmatrix(u) : f.jac_prototype else - f.jac_prototype + f.jac_prototype === nothing ? init_jacobian(jac_cache) : f.jac_prototype end end - return J, jac_config -end - -# Build Jacobian Caches -function jacobian_caches(alg::Union{NewtonRaphson, LevenbergMarquardt, TrustRegion}, f, u, - p, ::Val{true}) - uf = JacobianWrapper(f, p) - - du1 = zero(u) - du2 = zero(u) - tmp = zero(u) - J, jac_config = build_jac_and_jac_config(alg, f, uf, du1, u, tmp, du2) + du = _mutable_zero(u) + linprob = LinearProblem(J, _vec(fu); u0 = _vec(du)) - linprob = LinearProblem(J, _vec(zero(u)); u0 = _vec(zero(u))) weight = similar(u) recursivefill!(weight, true) Pl, Pr = wrapprecs(alg.precs(J, nothing, u, p, nothing, nothing, nothing, nothing, nothing)..., weight) - linsolve = init(linprob, alg.linsolve; alias_A = true, alias_b = true, Pl, Pr) + linsolve = init(linprob, alg.linsolve; alias_A = true, alias_b = true, Pl, Pr, + linsolve_kwargs...) - uf, linsolve, J, du1, jac_config -end - -function get_chunksize(jac_config::ForwardDiff.JacobianConfig{ - T, - V, - N, - D, -}) where {T, V, N, D -} - Val(N) -end # don't degrade compile time information to runtime information - -function jacobian_finitediff(f, x, ::Type{diff_type}, dir, colorvec, sparsity, - jac_prototype) where {diff_type} - (FiniteDiff.finite_difference_derivative(f, x, diff_type, eltype(x), dir = dir), 2) -end -function jacobian_finitediff(f, x::AbstractArray, ::Type{diff_type}, dir, colorvec, - sparsity, jac_prototype) where {diff_type} - f_in = diff_type === Val{:forward} ? f(x) : similar(x) - ret_eltype = eltype(f_in) - J = FiniteDiff.finite_difference_jacobian(f, x, diff_type, ret_eltype, f_in, - dir = dir, colorvec = colorvec, - sparsity = sparsity, - jac_prototype = jac_prototype) - return J, _nfcount(maximum(colorvec), diff_type) -end -function jacobian(cache, f::F) where {F} - x = cache.u - alg = cache.alg - uf = cache.uf - local tmp - - if DiffEqBase.has_jac(cache.f) - J = f.jac(cache.u, cache.p) - elseif alg_autodiff(alg) - J, tmp = jacobian_autodiff(uf, x, cache.f, alg) - else - jac_prototype = cache.f.jac_prototype - sparsity, colorvec = sparsity_colorvec(cache.f, x) - dir = true - J, tmp = jacobian_finitediff(uf, x, alg_difftype(alg), dir, colorvec, sparsity, - jac_prototype) - end - J + return uf, linsolve, J, fu, jac_cache, du end -jacobian_autodiff(f, x, nonlinfun, alg) = (ForwardDiff.derivative(f, x), 1, alg) -function jacobian_autodiff(f, x::AbstractArray, nonlinfun, alg) - jac_prototype = nonlinfun.jac_prototype - sparsity, colorvec = sparsity_colorvec(nonlinfun, x) - maxcolor = maximum(colorvec) - chunk_size = get_chunksize(alg) === Val(0) ? nothing : get_chunksize(alg) - num_of_chunks = chunk_size === nothing ? - Int(ceil(maxcolor / - SparseDiffTools.getsize(ForwardDiff.pickchunksize(maxcolor)))) : - Int(ceil(maxcolor / _unwrap_val(chunk_size))) - (forwarddiff_color_jacobian(f, x, colorvec = colorvec, sparsity = sparsity, - jac_prototype = jac_prototype, chunksize = chunk_size), - num_of_chunks) +## Special Handling for Scalars +function jacobian_caches(alg::AbstractNonlinearSolveAlgorithm, f, u::Number, p, + ::Val{false}; kwargs...) + # NOTE: Scalar `u` assumes scalar output from `f` + uf = JacobianWrapper{false}(f, p) + return uf, nothing, u, nothing, nothing, u end diff --git a/src/levenberg.jl b/src/levenberg.jl index db8955f4a..7a7383206 100644 --- a/src/levenberg.jl +++ b/src/levenberg.jl @@ -1,113 +1,82 @@ """ -```julia -LevenbergMarquardt(; chunk_size = Val{0}(), - autodiff = Val{true}(), - standardtag = Val{true}(), - concrete_jac = nothing, - diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, - damping_initial::Real = 1.0, - damping_increase_factor::Real = 2.0, - damping_decrease_factor::Real = 3.0, - finite_diff_step_geodesic::Real = 0.1, - α_geodesic::Real = 0.75, - b_uphill::Real = 1.0, - min_damping_D::AbstractFloat = 1e-8) -``` + LevenbergMarquardt(; concrete_jac = nothing, linsolve = nothing, + precs = DEFAULT_PRECS, damping_initial::Real = 1.0, + damping_increase_factor::Real = 2.0, damping_decrease_factor::Real = 3.0, + finite_diff_step_geodesic::Real = 0.1, α_geodesic::Real = 0.75, + b_uphill::Real = 1.0, min_damping_D::AbstractFloat = 1e-8, adkwargs...) An advanced Levenberg-Marquardt implementation with the improvements suggested in the [paper](https://arxiv.org/abs/1201.5885) "Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization". Designed for large-scale and numerically-difficult nonlinear systems. - ### Keyword Arguments -- `chunk_size`: the chunk size used by the internal ForwardDiff.jl automatic differentiation - system. This allows for multiple derivative columns to be computed simultaneously, - improving performance. Defaults to `0`, which is equivalent to using ForwardDiff.jl's - default chunk size mechanism. For more details, see the documentation for - [ForwardDiff.jl](https://juliadiff.org/ForwardDiff.jl/stable/). -- `autodiff`: whether to use forward-mode automatic differentiation for the Jacobian. - Note that this argument is ignored if an analytical Jacobian is passed, as that will be - used instead. Defaults to `Val{true}`, which means ForwardDiff.jl via - SparseDiffTools.jl is used by default. If `Val{false}`, then FiniteDiff.jl is used for - finite differencing. -- `standardtag`: whether to use a standardized tag definition for the purposes of automatic - differentiation. Defaults to true, which thus uses the `NonlinearSolveTag`. If `Val{false}`, - then ForwardDiff's default function naming tag is used, which results in larger stack - traces. -- `concrete_jac`: whether to build a concrete Jacobian. If a Krylov-subspace method is used, - then the Jacobian will not be constructed and instead direct Jacobian-vector products - `J*v` are computed using forward-mode automatic differentiation or finite differencing - tricks (without ever constructing the Jacobian). However, if the Jacobian is still needed, - for example for a preconditioner, `concrete_jac = true` can be passed in order to force - the construction of the Jacobian. -- `diff_type`: the type of finite differencing used if `autodiff = false`. Defaults to - `Val{:forward}` for forward finite differences. For more details on the choices, see the - [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl) documentation. -- `linsolve`: the [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) used for the - linear solves within the Newton method. Defaults to `nothing`, which means it uses the - LinearSolve.jl default algorithm choice. For more information on available algorithm - choices, see the [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). -- `precs`: the choice of preconditioners for the linear solver. Defaults to using no - preconditioners. For more information on specifying preconditioners for LinearSolve - algorithms, consult the - [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). -- `damping_initial`: the starting value for the damping factor. The damping factor is - inversely proportional to the step size. The damping factor is adjusted during each - iteration. Defaults to `1.0`. For more details, see section 2.1 of - [this paper](https://arxiv.org/abs/1201.5885). -- `damping_increase_factor`: the factor by which the damping is increased if a step is - rejected. Defaults to `2.0`. For more details, see section 2.1 of - [this paper](https://arxiv.org/abs/1201.5885). -- `damping_decrease_factor`: the factor by which the damping is decreased if a step is - accepted. Defaults to `3.0`. For more details, see section 2.1 of - [this paper](https://arxiv.org/abs/1201.5885). -- `finite_diff_step_geodesic`: the step size used for finite differencing used to calculate - the geodesic acceleration. Defaults to `0.1` which means that the step size is - approximately 10% of the first-order step. For more details, see section 3 of - [this paper](https://arxiv.org/abs/1201.5885). -- `α_geodesic`: a factor that determines if a step is accepted or rejected. To incorporate - geodesic acceleration as an addition to the Levenberg-Marquardt algorithm, it is necessary - that acceptable steps meet the condition - ``\\frac{2||a||}{||v||} \\le \\alpha_{\\text{geodesic}}``, where ``a`` is the geodesic - acceleration, ``v`` is the Levenberg-Marquardt algorithm's step (velocity along a geodesic - path) and `α_geodesic` is some number of order `1`. For most problems `α_geodesic = 0.75` - is a good value but for problems where convergence is difficult `α_geodesic = 0.1` is an - effective choice. Defaults to `0.75`. For more details, see section 3, equation (15) of - [this paper](https://arxiv.org/abs/1201.5885). -- `b_uphill`: a factor that determines if a step is accepted or rejected. The standard - choice in the Levenberg-Marquardt method is to accept all steps that decrease the cost - and reject all steps that increase the cost. Although this is a natural and safe choice, - it is often not the most efficient. Therefore downhill moves are always accepted, but - uphill moves are only conditionally accepted. To decide whether an uphill move will be - accepted at each iteration ``i``, we compute - ``\\beta_i = \\cos(v_{\\text{new}}, v_{\\text{old}})``, which denotes the cosine angle - between the proposed velocity ``v_{\\text{new}}`` and the velocity of the last accepted - step ``v_{\\text{old}}``. The idea is to accept uphill moves if the angle is small. To - specify, uphill moves are accepted if - ``(1-\\beta_i)^{b_{\\text{uphill}}} C_{i+1} \\le C_i``, where ``C_i`` is the cost at - iteration ``i``. Reasonable choices for `b_uphill` are `1.0` or `2.0`, with `b_uphill=2.0` - allowing higher uphill moves than `b_uphill=1.0`. When `b_uphill=0.0`, no uphill moves - will be accepted. Defaults to `1.0`. For more details, see section 4 of - [this paper](https://arxiv.org/abs/1201.5885). -- `min_damping_D`: the minimum value of the damping terms in the diagonal damping matrix - `DᵀD`, where `DᵀD` is given by the largest diagonal entries of `JᵀJ` yet encountered, - where `J` is the Jacobian. It is suggested by - [this paper](https://arxiv.org/abs/1201.5885) to use a minimum value of the elements in - `DᵀD` to prevent the damping from being too small. Defaults to `1e-8`. - - -!!! note - - Currently, the linear solver and chunk size choice only applies to in-place defined - `NonlinearProblem`s. That is expected to change in the future. + - `autodiff`: determines the backend used for the Jacobian. Note that this argument is + ignored if an analytical Jacobian is passed, as that will be used instead. Defaults to + `AutoForwardDiff()`. Valid choices are types from ADTypes.jl. + - `concrete_jac`: whether to build a concrete Jacobian. If a Krylov-subspace method is used, + then the Jacobian will not be constructed and instead direct Jacobian-vector products + `J*v` are computed using forward-mode automatic differentiation or finite differencing + tricks (without ever constructing the Jacobian). However, if the Jacobian is still needed, + for example for a preconditioner, `concrete_jac = true` can be passed in order to force + the construction of the Jacobian. + - `linsolve`: the [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) used for the + linear solves within the Newton method. Defaults to `nothing`, which means it uses the + LinearSolve.jl default algorithm choice. For more information on available algorithm + choices, see the [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). + - `precs`: the choice of preconditioners for the linear solver. Defaults to using no + preconditioners. For more information on specifying preconditioners for LinearSolve + algorithms, consult the + [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). + - `damping_initial`: the starting value for the damping factor. The damping factor is + inversely proportional to the step size. The damping factor is adjusted during each + iteration. Defaults to `1.0`. For more details, see section 2.1 of + [this paper](https://arxiv.org/abs/1201.5885). + - `damping_increase_factor`: the factor by which the damping is increased if a step is + rejected. Defaults to `2.0`. For more details, see section 2.1 of + [this paper](https://arxiv.org/abs/1201.5885). + - `damping_decrease_factor`: the factor by which the damping is decreased if a step is + accepted. Defaults to `3.0`. For more details, see section 2.1 of + [this paper](https://arxiv.org/abs/1201.5885). + - `finite_diff_step_geodesic`: the step size used for finite differencing used to calculate + the geodesic acceleration. Defaults to `0.1` which means that the step size is + approximately 10% of the first-order step. For more details, see section 3 of + [this paper](https://arxiv.org/abs/1201.5885). + - `α_geodesic`: a factor that determines if a step is accepted or rejected. To incorporate + geodesic acceleration as an addition to the Levenberg-Marquardt algorithm, it is necessary + that acceptable steps meet the condition + ``\\frac{2||a||}{||v||} \\le \\alpha_{\\text{geodesic}}``, where ``a`` is the geodesic + acceleration, ``v`` is the Levenberg-Marquardt algorithm's step (velocity along a geodesic + path) and `α_geodesic` is some number of order `1`. For most problems `α_geodesic = 0.75` + is a good value but for problems where convergence is difficult `α_geodesic = 0.1` is an + effective choice. Defaults to `0.75`. For more details, see section 3, equation (15) of + [this paper](https://arxiv.org/abs/1201.5885). + - `b_uphill`: a factor that determines if a step is accepted or rejected. The standard + choice in the Levenberg-Marquardt method is to accept all steps that decrease the cost + and reject all steps that increase the cost. Although this is a natural and safe choice, + it is often not the most efficient. Therefore downhill moves are always accepted, but + uphill moves are only conditionally accepted. To decide whether an uphill move will be + accepted at each iteration ``i``, we compute + ``\\beta_i = \\cos(v_{\\text{new}}, v_{\\text{old}})``, which denotes the cosine angle + between the proposed velocity ``v_{\\text{new}}`` and the velocity of the last accepted + step ``v_{\\text{old}}``. The idea is to accept uphill moves if the angle is small. To + specify, uphill moves are accepted if + ``(1-\\beta_i)^{b_{\\text{uphill}}} C_{i+1} \\le C_i``, where ``C_i`` is the cost at + iteration ``i``. Reasonable choices for `b_uphill` are `1.0` or `2.0`, with `b_uphill=2.0` + allowing higher uphill moves than `b_uphill=1.0`. When `b_uphill=0.0`, no uphill moves + will be accepted. Defaults to `1.0`. For more details, see section 4 of + [this paper](https://arxiv.org/abs/1201.5885). + - `min_damping_D`: the minimum value of the damping terms in the diagonal damping matrix + `DᵀD`, where `DᵀD` is given by the largest diagonal entries of `JᵀJ` yet encountered, + where `J` is the Jacobian. It is suggested by + [this paper](https://arxiv.org/abs/1201.5885) to use a minimum value of the elements in + `DᵀD` to prevent the damping from being too small. Defaults to `1e-8`. """ -struct LevenbergMarquardt{CS, AD, FDT, L, P, ST, CJ, T} <: - AbstractNewtonAlgorithm{CS, AD, FDT, ST, CJ} - linsolve::L - precs::P +@concrete struct LevenbergMarquardt{CJ, AD, T} <: AbstractNewtonAlgorithm{CJ, AD} + ad::AD + linsolve + precs damping_initial::T damping_increase_factor::T damping_decrease_factor::T @@ -117,54 +86,37 @@ struct LevenbergMarquardt{CS, AD, FDT, L, P, ST, CJ, T} <: min_damping_D::T end -function LevenbergMarquardt(; chunk_size = Val{0}(), - autodiff = Val{true}(), - standardtag = Val{true}(), - concrete_jac = nothing, - diff_type = Val{:forward}, - linsolve = nothing, - precs = DEFAULT_PRECS, - damping_initial::Real = 1.0, - damping_increase_factor::Real = 2.0, - damping_decrease_factor::Real = 3.0, - finite_diff_step_geodesic::Real = 0.1, - α_geodesic::Real = 0.75, - b_uphill::Real = 1.0, - min_damping_D::AbstractFloat = 1e-8) - LevenbergMarquardt{_unwrap_val(chunk_size), _unwrap_val(autodiff), diff_type, - typeof(linsolve), typeof(precs), _unwrap_val(standardtag), - _unwrap_val(concrete_jac), - typeof(min_damping_D)}(linsolve, precs, - damping_initial, - damping_increase_factor, - damping_decrease_factor, - finite_diff_step_geodesic, - α_geodesic, - b_uphill, - min_damping_D) +function LevenbergMarquardt(; concrete_jac = nothing, linsolve = nothing, + precs = DEFAULT_PRECS, damping_initial::Real = 1.0, damping_increase_factor::Real = 2.0, + damping_decrease_factor::Real = 3.0, finite_diff_step_geodesic::Real = 0.1, + α_geodesic::Real = 0.75, b_uphill::Real = 1.0, min_damping_D::AbstractFloat = 1e-8, + adkwargs...) + ad = default_adargs_to_adtype(; adkwargs...) + return LevenbergMarquardt{_unwrap_val(concrete_jac)}(ad, linsolve, precs, + damping_initial, damping_increase_factor, damping_decrease_factor, + finite_diff_step_geodesic, α_geodesic, b_uphill, min_damping_D) end -mutable struct LevenbergMarquardtCache{iip, fType, algType, uType, duType, resType, pType, - INType, tolType, probType, ufType, L, jType, JC, - DᵀDType, λType, lossType, -} - f::fType - alg::algType +@concrete mutable struct LevenbergMarquardtCache{iip, uType, jType, λType, lossType} <: + AbstractNonlinearSolveCache{iip} + f + alg u::uType - fu::resType - p::pType - uf::ufType - linsolve::L + fu1 + fu2 + du + p + uf + linsolve J::jType - du_tmp::duType - jac_config::JC + jac_cache force_stop::Bool maxiters::Int - internalnorm::INType - retcode::SciMLBase.ReturnCode.T - abstol::tolType - prob::probType - DᵀD::DᵀDType + internalnorm + retcode::ReturnCode.T + abstol + prob + DᵀD JᵀJ::jType λ::λType λ_factor::λType @@ -182,75 +134,21 @@ mutable struct LevenbergMarquardtCache{iip, fType, algType, uType, duType, resTy δ::uType loss_old::lossType make_new_J::Bool - fu_tmp::resType + fu_tmp + u_tmp + Jv mat_tmp::jType stats::NLStats - - function LevenbergMarquardtCache{iip}(f::fType, alg::algType, u::uType, fu::resType, - p::pType, uf::ufType, linsolve::L, J::jType, - du_tmp::duType, jac_config::JC, - force_stop::Bool, maxiters::Int, - internalnorm::INType, - retcode::SciMLBase.ReturnCode.T, abstol::tolType, - prob::probType, DᵀD::DᵀDType, JᵀJ::jType, - λ::λType, λ_factor::λType, - damping_increase_factor::λType, - damping_decrease_factor::λType, h::λType, - α_geodesic::λType, b_uphill::λType, - min_damping_D::λType, v::uType, - a::uType, tmp_vec::uType, v_old::uType, - norm_v_old::lossType, δ::uType, - loss_old::lossType, make_new_J::Bool, - fu_tmp::resType, - mat_tmp::jType, - stats::NLStats) where { - iip, fType, algType, - uType, duType, resType, - pType, INType, tolType, - probType, ufType, L, - jType, JC, DᵀDType, - λType, lossType, - } - new{iip, fType, algType, uType, duType, resType, - pType, INType, tolType, probType, ufType, L, - jType, JC, DᵀDType, λType, lossType}(f, alg, u, fu, p, uf, linsolve, J, du_tmp, - jac_config, force_stop, maxiters, - internalnorm, retcode, abstol, prob, DᵀD, - JᵀJ, λ, λ_factor, - damping_increase_factor, - damping_decrease_factor, h, - α_geodesic, b_uphill, min_damping_D, - v, a, tmp_vec, v_old, - norm_v_old, δ, loss_old, make_new_J, - fu_tmp, mat_tmp, stats) - end -end - -function jacobian_caches(alg::LevenbergMarquardt, f, u, p, ::Val{false}) - JacobianWrapper(f, p), nothing, ArrayInterface.undefmatrix(u), nothing, nothing end function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::LevenbergMarquardt, - args...; - alias_u0 = false, - maxiters = 1000, - abstol = 1e-6, - internalnorm = DEFAULT_NORM, - kwargs...) where {uType, iip} - if alias_u0 - u = prob.u0 - else - u = deepcopy(prob.u0) - end - f = prob.f - p = prob.p - if iip - fu = zero(u) - f(fu, u, p) - else - fu = f(u, p) - end - uf, linsolve, J, du_tmp, jac_config = jacobian_caches(alg, f, u, p, Val(iip)) + args...; alias_u0 = false, maxiters = 1000, abstol = 1e-6, internalnorm = DEFAULT_NORM, + linsolve_kwargs=(;), kwargs...) where {uType, iip} + @unpack f, u0, p = prob + u = alias_u0 ? u0 : deepcopy(u0) + fu1 = evaluate_f(prob, u) + uf, linsolve, J, fu2, jac_cache, du = jacobian_caches(alg, f, u, p, Val(iip); + linsolve_kwargs) λ = convert(eltype(u), alg.damping_initial) λ_factor = convert(eltype(u), alg.damping_increase_factor) @@ -269,34 +167,33 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::LevenbergMarq DᵀD = Diagonal(d) end - loss = internalnorm(fu) - JᵀJ = zero(J) + loss = internalnorm(fu1) + JᵀJ = J isa Number ? zero(J) : similar(J, size(J, 2), size(J, 2)) v = zero(u) a = zero(u) tmp_vec = zero(u) v_old = zero(u) δ = zero(u) make_new_J = true - fu_tmp = zero(fu) - mat_tmp = zero(J) + fu_tmp = zero(fu1) + mat_tmp = zero(JᵀJ) - return LevenbergMarquardtCache{iip}(f, alg, u, fu, p, uf, linsolve, J, du_tmp, - jac_config, false, maxiters, internalnorm, - ReturnCode.Default, abstol, prob, DᵀD, JᵀJ, - λ, λ_factor, damping_increase_factor, - damping_decrease_factor, h, - α_geodesic, b_uphill, min_damping_D, - v, a, tmp_vec, v_old, loss, δ, loss, make_new_J, - fu_tmp, mat_tmp, NLStats(1, 0, 0, 0, 0)) + return LevenbergMarquardtCache{iip}(f, alg, u, fu1, fu2, du, p, uf, linsolve, J, + jac_cache, false, maxiters, internalnorm, ReturnCode.Default, abstol, prob, DᵀD, + JᵀJ, λ, λ_factor, damping_increase_factor, damping_decrease_factor, h, α_geodesic, + b_uphill, min_damping_D, v, a, tmp_vec, v_old, loss, δ, loss, make_new_J, fu_tmp, + zero(u), zero(fu1), mat_tmp, NLStats(1, 0, 0, 0, 0)) end + function perform_step!(cache::LevenbergMarquardtCache{true}) - @unpack fu, f, make_new_J = cache - if iszero(fu) + @unpack fu1, f, make_new_J = cache + if _iszero(fu1) cache.force_stop = true return nothing end + if make_new_J - jacobian!(cache.J, cache) + jacobian!!(cache.J, cache) mul!(cache.JᵀJ, cache.J', cache.J) cache.DᵀD .= max.(cache.DᵀD, Diagonal(cache.JᵀJ)) cache.make_new_J = false @@ -305,25 +202,25 @@ function perform_step!(cache::LevenbergMarquardtCache{true}) @unpack u, p, λ, JᵀJ, DᵀD, J, alg, linsolve = cache # Usual Levenberg-Marquardt step ("velocity"). - # The following lines do: cache.v = -cache.mat_tmp \ cache.fu_tmp - mul!(cache.fu_tmp, J', fu) + # The following lines do: cache.v = -cache.mat_tmp \ cache.u_tmp + mul!(cache.u_tmp, J', fu1) @. cache.mat_tmp = JᵀJ + λ * DᵀD - linres = dolinsolve(alg.precs, linsolve, A = cache.mat_tmp, b = _vec(cache.fu_tmp), - linu = _vec(cache.du_tmp), p = p, reltol = cache.abstol) + linres = dolinsolve(alg.precs, linsolve; A = cache.mat_tmp, b = _vec(cache.u_tmp), + linu = _vec(cache.du), p = p, reltol = cache.abstol) cache.linsolve = linres.cache - @. cache.v = -cache.du_tmp + @. cache.v = -cache.du # Geodesic acceleration (step_size = v + a / 2). @unpack v, α_geodesic, h = cache f(cache.fu_tmp, u .+ h .* v, p) # The following lines do: cache.a = -J \ cache.fu_tmp - mul!(cache.du_tmp, J, v) - @. cache.fu_tmp = (2 / h) * ((cache.fu_tmp - fu) / h - cache.du_tmp) - linres = dolinsolve(alg.precs, linsolve, A = J, b = _vec(cache.fu_tmp), - linu = _vec(cache.du_tmp), p = p, reltol = cache.abstol) + mul!(cache.Jv, J, v) + @. cache.fu_tmp = (2 / h) * ((cache.fu_tmp - fu1) / h - cache.Jv) + linres = dolinsolve(alg.precs, linsolve; A = J, b = _vec(cache.fu_tmp), + linu = _vec(cache.du), p = p, reltol = cache.abstol) cache.linsolve = linres.cache - @. cache.a = -cache.du_tmp + @. cache.a = -cache.du cache.stats.nsolve += 2 cache.stats.nfactors += 2 @@ -345,7 +242,7 @@ function perform_step!(cache::LevenbergMarquardtCache{true}) cache.force_stop = true return nothing end - cache.fu .= cache.fu_tmp + cache.fu1 .= cache.fu_tmp cache.v_old .= v cache.norm_v_old = norm_v cache.loss_old = loss @@ -359,13 +256,14 @@ function perform_step!(cache::LevenbergMarquardtCache{true}) end function perform_step!(cache::LevenbergMarquardtCache{false}) - @unpack fu, f, make_new_J = cache - if iszero(fu) + @unpack fu1, f, make_new_J = cache + if _iszero(fu1) cache.force_stop = true return nothing end + if make_new_J - cache.J = jacobian(cache, f) + cache.J = jacobian!!(cache.J, cache) cache.JᵀJ = cache.J' * cache.J if cache.JᵀJ isa Number cache.DᵀD = max(cache.DᵀD, cache.JᵀJ) @@ -378,11 +276,11 @@ function perform_step!(cache::LevenbergMarquardtCache{false}) @unpack u, p, λ, JᵀJ, DᵀD, J = cache # Usual Levenberg-Marquardt step ("velocity"). - cache.v = -(JᵀJ + λ * DᵀD) \ (J' * fu) + cache.v = -(JᵀJ + λ * DᵀD) \ (J' * fu1) @unpack v, h, α_geodesic = cache # Geodesic acceleration (step_size = v + a / 2). - cache.a = -J \ ((2 / h) .* ((f(u .+ h .* v, p) .- fu) ./ h .- J * v)) + cache.a = -J \ ((2 / h) .* ((f(u .+ h .* v, p) .- fu1) ./ h .- J * v)) cache.stats.nsolve += 1 cache.stats.nfactors += 1 @@ -404,7 +302,7 @@ function perform_step!(cache::LevenbergMarquardtCache{false}) cache.force_stop = true return nothing end - cache.fu = fu_new + cache.fu1 = fu_new cache.v_old = v cache.norm_v_old = norm_v cache.loss_old = loss @@ -416,19 +314,3 @@ function perform_step!(cache::LevenbergMarquardtCache{false}) cache.λ_factor = cache.damping_increase_factor return nothing end - -function SciMLBase.solve!(cache::LevenbergMarquardtCache) - while !cache.force_stop && cache.stats.nsteps < cache.maxiters - perform_step!(cache) - cache.stats.nsteps += 1 - end - - if cache.stats.nsteps == cache.maxiters - cache.retcode = ReturnCode.MaxIters - else - cache.retcode = ReturnCode.Success - end - - SciMLBase.build_solution(cache.prob, cache.alg, cache.u, cache.fu; - retcode = cache.retcode, stats = cache.stats) -end diff --git a/src/linesearch.jl b/src/linesearch.jl new file mode 100644 index 000000000..30861e14b --- /dev/null +++ b/src/linesearch.jl @@ -0,0 +1,156 @@ +""" + LineSearch(method = Static(), autodiff = AutoFiniteDiff(), alpha = true) + +Wrapper over algorithms from +[LineSeaches.jl](https://github.com/JuliaNLSolvers/LineSearches.jl/). Allows automatic +construction of the objective functions for the line search algorithms utilizing automatic +differentiation for fast Vector Jacobian Products. + +### Arguments + + - `method`: the line search algorithm to use. Defaults to `Static()`, which means that the + step size is fixed to the value of `alpha`. + - `autodiff`: the automatic differentiation backend to use for the line search. Defaults to + `AutoFiniteDiff()`, which means that finite differencing is used to compute the VJP. + `AutoZygote()` will be faster in most cases, but it requires `Zygote.jl` to be manually + installed and loaded + - `alpha`: the initial step size to use. Defaults to `true` (which is equivalent to `1`). +""" +@concrete struct LineSearch + method + autodiff + α +end + +function LineSearch(; method = Static(), autodiff = AutoFiniteDiff(), alpha = true) + return LineSearch(method, autodiff, alpha) +end + +@concrete mutable struct LineSearchCache + f + ϕ + dϕ + ϕdϕ + α + ls +end + +function LineSearchCache(ls::LineSearch, f, u::Number, p, _, ::Val{false}) + eval_f(u, du, α) = eval_f(u - α * du) + eval_f(u) = f(u, p) + + ls.method isa Static && return LineSearchCache(eval_f, nothing, nothing, nothing, + convert(typeof(u), ls.α), ls) + + g(u, fu) = last(value_derivative(Base.Fix2(f, p), u)) * fu + + function ϕ(u, du) + function ϕ_internal(α) + u_ = u - α * du + _fu = eval_f(u_) + return dot(_fu, _fu) / 2 + end + return ϕ_internal + end + + function dϕ(u, du) + function dϕ_internal(α) + u_ = u - α * du + _fu = eval_f(u_) + g₀ = g(u_, _fu) + return dot(g₀, -du) + end + return dϕ_internal + end + + function ϕdϕ(u, du) + function ϕdϕ_internal(α) + u_ = u - α * du + _fu = eval_f(u_) + g₀ = g(u_, _fu) + return dot(_fu, _fu) / 2, dot(g₀, -du) + end + return ϕdϕ_internal + end + + return LineSearchCache(eval_f, ϕ, dϕ, ϕdϕ, convert(eltype(u), ls.α), ls) +end + +function LineSearchCache(ls::LineSearch, f, u, p, fu1, IIP::Val{iip}) where {iip} + fu = iip ? fu1 : nothing + u_ = _mutable_zero(u) + + function eval_f(u, du, α) + @. u_ = u - α * du + return eval_f(u_) + end + eval_f(u) = evaluate_f(f, u, p, IIP; fu) + + ls.method isa Static && return LineSearchCache(eval_f, nothing, nothing, nothing, + convert(eltype(u), ls.α), ls) + + g₀ = _mutable_zero(u) + + autodiff = if iip && (ls.autodiff isa AutoZygote || ls.autodiff isa AutoSparseZygote) + @warn "Attempting to use Zygote.jl for linesearch on an in-place problem. Falling back to finite differencing." + AutoFiniteDiff() + else + ls.autodiff + end + + function g!(u, fu) + op = VecJac((args...) -> f(args..., p), u; autodiff) + if iip + mul!(g₀, op, fu) + return g₀ + else + return op * fu + end + end + + function ϕ(u, du) + function ϕ_internal(α) + @. u_ = u - α * du + _fu = eval_f(u_) + return dot(_fu, _fu) / 2 + end + return ϕ_internal + end + + function dϕ(u, du) + function dϕ_internal(α) + @. u_ = u - α * du + _fu = eval_f(u_) + g₀ = g!(u_, _fu) + return dot(g₀, -du) + end + return dϕ_internal + end + + function ϕdϕ(u, du) + function ϕdϕ_internal(α) + @. u_ = u - α * du + _fu = eval_f(u_) + g₀ = g!(u_, _fu) + return dot(_fu, _fu) / 2, dot(g₀, -du) + end + return ϕdϕ_internal + end + + return LineSearchCache(eval_f, ϕ, dϕ, ϕdϕ, convert(eltype(u), ls.α), ls) +end + +function perform_linesearch!(cache::LineSearchCache, u, du) + cache.ls.method isa Static && return cache.α + + ϕ = cache.ϕ(u, du) + dϕ = cache.dϕ(u, du) + ϕdϕ = cache.ϕdϕ(u, du) + + ϕ₀, dϕ₀ = ϕdϕ(zero(eltype(u))) + + # This case is sometimes possible for large optimization problems + dϕ₀ ≥ 0 && return cache.α + + return first(cache.ls.method(ϕ, cache.dϕ(u, du), cache.ϕdϕ(u, du), cache.α, ϕ₀, dϕ₀)) +end diff --git a/src/raphson.jl b/src/raphson.jl index 24e5799fd..fdff3654d 100644 --- a/src/raphson.jl +++ b/src/raphson.jl @@ -1,9 +1,6 @@ """ -```julia -NewtonRaphson(; chunk_size = Val{0}(), autodiff = Val{true}(), - standardtag = Val{true}(), concrete_jac = nothing, - diff_type = Val{:forward}, linsolve = nothing, precs = DEFAULT_PRECS) -``` + NewtonRaphson(; concrete_jac = nothing, linsolve = nothing, + precs = DEFAULT_PRECS, adkwargs...) An advanced NewtonRaphson implementation with support for efficient handling of sparse matrices via colored automatic differentiation and preconditioned linear solvers. Designed @@ -11,29 +8,15 @@ for large-scale and numerically-difficult nonlinear systems. ### Keyword Arguments - - `chunk_size`: the chunk size used by the internal ForwardDiff.jl automatic differentiation - system. This allows for multiple derivative columns to be computed simultaneously, - improving performance. Defaults to `0`, which is equivalent to using ForwardDiff.jl's - default chunk size mechanism. For more details, see the documentation for - [ForwardDiff.jl](https://juliadiff.org/ForwardDiff.jl/stable/). - - `autodiff`: whether to use forward-mode automatic differentiation for the Jacobian. - Note that this argument is ignored if an analytical Jacobian is passed, as that will be - used instead. Defaults to `Val{true}`, which means ForwardDiff.jl via - SparseDiffTools.jl is used by default. If `Val{false}`, then FiniteDiff.jl is used for - finite differencing. - - `standardtag`: whether to use a standardized tag definition for the purposes of automatic - differentiation. Defaults to true, which thus uses the `NonlinearSolveTag`. If `Val{false}`, - then ForwardDiff's default function naming tag is used, which results in larger stack - traces. + - `autodiff`: determines the backend used for the Jacobian. Note that this argument is + ignored if an analytical Jacobian is passed, as that will be used instead. Defaults to + `AutoForwardDiff()`. Valid choices are types from ADTypes.jl. - `concrete_jac`: whether to build a concrete Jacobian. If a Krylov-subspace method is used, then the Jacobian will not be constructed and instead direct Jacobian-vector products `J*v` are computed using forward-mode automatic differentiation or finite differencing tricks (without ever constructing the Jacobian). However, if the Jacobian is still needed, for example for a preconditioner, `concrete_jac = true` can be passed in order to force the construction of the Jacobian. - - `diff_type`: the type of finite differencing used if `autodiff = false`. Defaults to - `Val{:forward}` for forward finite differences. For more details on the choices, see the - [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl) documentation. - `linsolve`: the [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) used for the linear solves within the Newton method. Defaults to `nothing`, which means it uses the LinearSolve.jl default algorithm choice. For more information on available algorithm @@ -42,114 +25,75 @@ for large-scale and numerically-difficult nonlinear systems. preconditioners. For more information on specifying preconditioners for LinearSolve algorithms, consult the [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). - -!!! note - - Currently, the linear solver and chunk size choice only applies to in-place defined - `NonlinearProblem`s. That is expected to change in the future. + - `linesearch`: the line search algorithm to use. Defaults to [`LineSearch()`](@ref), + which means that no line search is performed. Algorithms from `LineSearches.jl` can be + used here directly, and they will be converted to the correct `LineSearch`. """ -struct NewtonRaphson{CS, AD, FDT, L, P, ST, CJ} <: - AbstractNewtonAlgorithm{CS, AD, FDT, ST, CJ} - linsolve::L - precs::P +@concrete struct NewtonRaphson{CJ, AD} <: AbstractNewtonAlgorithm{CJ, AD} + ad::AD + linsolve + precs + linesearch end -function NewtonRaphson(; chunk_size = Val{0}(), autodiff = Val{true}(), - standardtag = Val{true}(), concrete_jac = nothing, - diff_type = Val{:forward}, linsolve = nothing, precs = DEFAULT_PRECS) - NewtonRaphson{_unwrap_val(chunk_size), _unwrap_val(autodiff), diff_type, - typeof(linsolve), typeof(precs), _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, - precs) +function NewtonRaphson(; concrete_jac = nothing, linsolve = nothing, + linesearch = LineSearch(), precs = DEFAULT_PRECS, adkwargs...) + ad = default_adargs_to_adtype(; adkwargs...) + linesearch = linesearch isa LineSearch ? linesearch : LineSearch(; method=linesearch) + return NewtonRaphson{_unwrap_val(concrete_jac)}(ad, linsolve, precs, linesearch) end -mutable struct NewtonRaphsonCache{iip, fType, algType, uType, duType, resType, pType, - INType, tolType, - probType, ufType, L, jType, JC} - f::fType - alg::algType - u::uType - fu::resType - p::pType - uf::ufType - linsolve::L - J::jType - du1::duType - jac_config::JC - force_stop::Bool +@concrete mutable struct NewtonRaphsonCache{iip} <: AbstractNonlinearSolveCache{iip} + f + alg + u + fu1 + fu2 + du + p + uf + linsolve + J + jac_cache + force_stop maxiters::Int - internalnorm::INType - retcode::SciMLBase.ReturnCode.T - abstol::tolType - prob::probType + internalnorm + retcode::ReturnCode.T + abstol + prob stats::NLStats - - function NewtonRaphsonCache{iip}(f::fType, alg::algType, u::uType, fu::resType, - p::pType, uf::ufType, linsolve::L, J::jType, - du1::duType, - jac_config::JC, force_stop::Bool, maxiters::Int, - internalnorm::INType, - retcode::SciMLBase.ReturnCode.T, abstol::tolType, - prob::probType, - stats::NLStats) where { - iip, fType, algType, uType, - duType, resType, pType, INType, - tolType, - probType, ufType, L, jType, JC} - new{iip, fType, algType, uType, duType, resType, pType, INType, tolType, - probType, ufType, L, jType, JC}(f, alg, u, fu, p, - uf, linsolve, J, du1, jac_config, - force_stop, maxiters, internalnorm, - retcode, abstol, prob, stats) - end + lscache end -function jacobian_caches(alg::NewtonRaphson, f, u, p, ::Val{false}) - JacobianWrapper(f, p), nothing, nothing, nothing, nothing -end - -function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::NewtonRaphson, - args...; - alias_u0 = false, - maxiters = 1000, - abstol = 1e-6, - internalnorm = DEFAULT_NORM, - kwargs...) where {uType, iip} - if alias_u0 - u = prob.u0 - else - u = deepcopy(prob.u0) - end - f = prob.f - p = prob.p - if iip - fu = zero(u) - f(fu, u, p) - else - fu = f(u, p) - end - uf, linsolve, J, du1, jac_config = jacobian_caches(alg, f, u, p, Val(iip)) - - return NewtonRaphsonCache{iip}(f, alg, u, fu, p, uf, linsolve, J, du1, jac_config, - false, maxiters, internalnorm, - ReturnCode.Default, abstol, prob, NLStats(1, 0, 0, 0, 0)) +function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::NewtonRaphson, args...; + alias_u0 = false, maxiters = 1000, abstol = 1e-6, internalnorm = DEFAULT_NORM, + linsolve_kwargs=(;), kwargs...) where {uType, iip} + @unpack f, u0, p = prob + u = alias_u0 ? u0 : deepcopy(u0) + fu1 = evaluate_f(prob, u) + uf, linsolve, J, fu2, jac_cache, du = jacobian_caches(alg, f, u, p, Val(iip); + linsolve_kwargs) + + return NewtonRaphsonCache{iip}(f, alg, u, fu1, fu2, du, p, uf, linsolve, J, + jac_cache, false, maxiters, internalnorm, ReturnCode.Default, abstol, prob, + NLStats(1, 0, 0, 0, 0), LineSearchCache(alg.linesearch, f, u, p, fu1, Val(iip))) end function perform_step!(cache::NewtonRaphsonCache{true}) - @unpack u, fu, f, p, alg = cache - @unpack J, linsolve, du1 = cache - jacobian!(J, cache) + @unpack u, fu1, f, p, alg, J, linsolve, du = cache + jacobian!!(J, cache) # u = u - J \ fu - linres = dolinsolve(alg.precs, linsolve, A = J, b = _vec(fu), linu = _vec(du1), - p = p, reltol = cache.abstol) + linres = dolinsolve(alg.precs, linsolve; A = J, b = _vec(fu1), linu = _vec(du), + p, reltol = cache.abstol) cache.linsolve = linres.cache - @. u = u - du1 - f(fu, u, p) - if cache.internalnorm(cache.fu) < cache.abstol - cache.force_stop = true - end + # Line Search + α = perform_linesearch!(cache.lscache, u, du) + @. u = u - α * du + f(cache.fu1, u, p) + + cache.internalnorm(fu1) < cache.abstol && (cache.force_stop = true) cache.stats.nf += 1 cache.stats.njacs += 1 cache.stats.nsolve += 1 @@ -158,13 +102,24 @@ function perform_step!(cache::NewtonRaphsonCache{true}) end function perform_step!(cache::NewtonRaphsonCache{false}) - @unpack u, fu, f, p = cache - J = jacobian(cache, f) - cache.u = u - J \ fu - cache.fu = f(cache.u, p) - if iszero(cache.fu) || cache.internalnorm(cache.fu) < cache.abstol - cache.force_stop = true + @unpack u, fu1, f, p, alg, linsolve = cache + + cache.J = jacobian!!(cache.J, cache) + # u = u - J \ fu + if linsolve === nothing + cache.du = fu1 / cache.J + else + linres = dolinsolve(alg.precs, linsolve; A = cache.J, b = _vec(fu1), + linu = _vec(cache.du), p, reltol = cache.abstol) + cache.linsolve = linres.cache end + + # Line Search + α = perform_linesearch!(cache.lscache, u, cache.du) + cache.u = @. u - α * cache.du # `u` might not support mutation + cache.fu1 = f(cache.u, p) + + cache.internalnorm(fu1) < cache.abstol && (cache.force_stop = true) cache.stats.nf += 1 cache.stats.njacs += 1 cache.stats.nsolve += 1 @@ -172,32 +127,16 @@ function perform_step!(cache::NewtonRaphsonCache{false}) return nothing end -function SciMLBase.solve!(cache::NewtonRaphsonCache) - while !cache.force_stop && cache.stats.nsteps < cache.maxiters - perform_step!(cache) - cache.stats.nsteps += 1 - end - - if cache.stats.nsteps == cache.maxiters - cache.retcode = ReturnCode.MaxIters - else - cache.retcode = ReturnCode.Success - end - - SciMLBase.build_solution(cache.prob, cache.alg, cache.u, cache.fu; - retcode = cache.retcode, stats = cache.stats) -end - function SciMLBase.reinit!(cache::NewtonRaphsonCache{iip}, u0 = cache.u; p = cache.p, abstol = cache.abstol, maxiters = cache.maxiters) where {iip} cache.p = p if iip recursivecopy!(cache.u, u0) - cache.f(cache.fu, cache.u, p) + cache.f(cache.fu1, cache.u, p) else # don't have alias_u0 but cache.u is never mutated for OOP problems so it doesn't matter cache.u = u0 - cache.fu = cache.f(cache.u, p) + cache.fu1 = cache.f(cache.u, p) end cache.abstol = abstol cache.maxiters = maxiters diff --git a/src/trustRegion.jl b/src/trustRegion.jl index 6e867699c..21aee19c9 100644 --- a/src/trustRegion.jl +++ b/src/trustRegion.jl @@ -8,13 +8,13 @@ scheme are provided below. ## Using `RadiusUpdateSchemes` -`RadiusUpdateSchemes` uses the standard EnumX interface (https://github.com/fredrikekre/EnumX.jl), +`RadiusUpdateSchemes` uses the standard EnumX interface (https://github.com/fredrikekre/EnumX.jl), and hence inherits all properties of being an EnumX, including the type of each constituent enum states as `RadiusUpdateSchemes.T`. Simply put the desired scheme as follows: `TrustRegion(radius_update_scheme = your desired update scheme)`. For example, `sol = solve(prob, alg=TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Hei))`. """ -EnumX.@enumx RadiusUpdateSchemes begin +@enumx RadiusUpdateSchemes begin """ `RadiusUpdateSchemes.Simple` @@ -68,19 +68,12 @@ end """ ```julia -TrustRegion(; chunk_size = Val{0}(), autodiff = Val{true}(), - standardtag = Val{true}(), concrete_jac = nothing, - diff_type = Val{:forward}, linsolve = nothing, precs = DEFAULT_PRECS, - radius_update_scheme = RadiusUpdateSchemes.Simple, - max_trust_radius::Real = 0 // 1, - initial_trust_radius::Real = 0 // 1, - step_threshold::Real = 1 // 10, - shrink_threshold::Real = 1 // 4, - expand_threshold::Real = 3 // 4, - shrink_factor::Real = 1 // 4, - expand_factor::Real = 2 // 1, - max_shrink_times::Int = 32) -``` + TrustRegion(; concrete_jac = nothing, linsolve = nothing, precs = DEFAULT_PRECS, + radius_update_scheme::RadiusUpdateSchemes.T = RadiusUpdateSchemes.Simple, + max_trust_radius::Real = 0 // 1, initial_trust_radius::Real = 0 // 1, + step_threshold::Real = 1 // 10, shrink_threshold::Real = 1 // 4, + expand_threshold::Real = 3 // 4, shrink_factor::Real = 1 // 4, + expand_factor::Real = 2 // 1, max_shrink_times::Int = 32, adkwargs...) An advanced TrustRegion implementation with support for efficient handling of sparse matrices via colored automatic differentiation and preconditioned linear solvers. Designed @@ -88,29 +81,15 @@ for large-scale and numerically-difficult nonlinear systems. ### Keyword Arguments - - `chunk_size`: the chunk size used by the internal ForwardDiff.jl automatic differentiation - system. This allows for multiple derivative columns to be computed simultaneously, - improving performance. Defaults to `0`, which is equivalent to using ForwardDiff.jl's - default chunk size mechanism. For more details, see the documentation for - [ForwardDiff.jl](https://juliadiff.org/ForwardDiff.jl/stable/). - - `autodiff`: whether to use forward-mode automatic differentiation for the Jacobian. - Note that this argument is ignored if an analytical Jacobian is passed, as that will be - used instead. Defaults to `Val{true}`, which means ForwardDiff.jl via - SparseDiffTools.jl is used by default. If `Val{false}`, then FiniteDiff.jl is used for - finite differencing. - - `standardtag`: whether to use a standardized tag definition for the purposes of automatic - differentiation. Defaults to true, which thus uses the `NonlinearSolveTag`. If `Val{false}`, - then ForwardDiff's default function naming tag is used, which results in larger stack - traces. + - `autodiff`: determines the backend used for the Jacobian. Note that this argument is + ignored if an analytical Jacobian is passed, as that will be used instead. Defaults to + `AutoForwardDiff()`. Valid choices are types from ADTypes.jl. - `concrete_jac`: whether to build a concrete Jacobian. If a Krylov-subspace method is used, then the Jacobian will not be constructed and instead direct Jacobian-vector products `J*v` are computed using forward-mode automatic differentiation or finite differencing tricks (without ever constructing the Jacobian). However, if the Jacobian is still needed, for example for a preconditioner, `concrete_jac = true` can be passed in order to force the construction of the Jacobian. - - `diff_type`: the type of finite differencing used if `autodiff = false`. Defaults to - `Val{:forward}` for forward finite differences. For more details on the choices, see the - [FiniteDiff.jl](https://github.com/JuliaDiff/FiniteDiff.jl) documentation. - `linsolve`: the [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) used for the linear solves within the Newton method. Defaults to `nothing`, which means it uses the LinearSolve.jl default algorithm choice. For more information on available algorithm @@ -120,7 +99,7 @@ for large-scale and numerically-difficult nonlinear systems. algorithms, consult the [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). - `radius_update_scheme`: the choice of radius update scheme to be used. Defaults to `RadiusUpdateSchemes.Simple` - which follows the conventional approach. Other available schemes are `RadiusUpdateSchemes.Hei`, + which follows the conventional approach. Other available schemes are `RadiusUpdateSchemes.Hei`, `RadiusUpdateSchemes.Yuan`, `RadiusUpdateSchemes.Bastin`, `RadiusUpdateSchemes.Fan`. These schemes have the trust region radius converging to zero that is seen to improve convergence. For more details, see the [Yuan, Yx](https://link.springer.com/article/10.1007/s10107-015-0893-2#Sec4). @@ -148,18 +127,13 @@ for large-scale and numerically-difficult nonlinear systems. `expand_threshold < r` (with `r` defined in `shrink_threshold`). Defaults to `2.0`. - `max_shrink_times`: the maximum number of times to shrink the trust region radius in a row, `max_shrink_times` is exceeded, the algorithm returns. Defaults to `32`. - -!!! note - - Currently, the linear solver and chunk size choice only applies to in-place defined - `NonlinearProblem`s. That is expected to change in the future. """ -struct TrustRegion{CS, AD, FDT, L, P, ST, CJ, MTR} <: - AbstractNewtonAlgorithm{CS, AD, FDT, ST, CJ} - linsolve::L - precs::P +@concrete struct TrustRegion{CJ, AD, MTR} <: AbstractNewtonAlgorithm{CJ, AD} + ad::AD + linsolve + precs radius_update_scheme::RadiusUpdateSchemes.T - max_trust_radius::MTR + max_trust_radius initial_trust_radius::MTR step_threshold::MTR shrink_threshold::MTR @@ -169,68 +143,54 @@ struct TrustRegion{CS, AD, FDT, L, P, ST, CJ, MTR} <: max_shrink_times::Int end -function TrustRegion(; chunk_size = Val{0}(), - autodiff = Val{true}(), - standardtag = Val{true}(), concrete_jac = nothing, - diff_type = Val{:forward}, linsolve = nothing, precs = DEFAULT_PRECS, +function TrustRegion(; concrete_jac = nothing, linsolve = nothing, precs = DEFAULT_PRECS, radius_update_scheme::RadiusUpdateSchemes.T = RadiusUpdateSchemes.Simple, #defaults to conventional radius update - max_trust_radius::Real = 0 // 1, - initial_trust_radius::Real = 0 // 1, - step_threshold::Real = 1 // 10, - shrink_threshold::Real = 1 // 4, - expand_threshold::Real = 3 // 4, - shrink_factor::Real = 1 // 4, - expand_factor::Real = 2 // 1, - max_shrink_times::Int = 32) - TrustRegion{_unwrap_val(chunk_size), _unwrap_val(autodiff), diff_type, - typeof(linsolve), typeof(precs), _unwrap_val(standardtag), - _unwrap_val(concrete_jac), typeof(max_trust_radius), - }(linsolve, precs, radius_update_scheme, max_trust_radius, - initial_trust_radius, - step_threshold, - shrink_threshold, - expand_threshold, - shrink_factor, - expand_factor, - max_shrink_times) + max_trust_radius::Real = 0 // 1, initial_trust_radius::Real = 0 // 1, + step_threshold::Real = 1 // 10, shrink_threshold::Real = 1 // 4, + expand_threshold::Real = 3 // 4, shrink_factor::Real = 1 // 4, + expand_factor::Real = 2 // 1, max_shrink_times::Int = 32, adkwargs...) + ad = default_adargs_to_adtype(; adkwargs...) + return TrustRegion{_unwrap_val(concrete_jac)}(ad, linsolve, precs, radius_update_scheme, + max_trust_radius, initial_trust_radius, step_threshold, shrink_threshold, + expand_threshold, shrink_factor, expand_factor, max_shrink_times) end -mutable struct TrustRegionCache{iip, fType, algType, uType, resType, pType, - INType, tolType, probType, ufType, L, jType, JC, floatType, - trustType, suType, su2Type, tmpType} - f::fType - alg::algType - u_prev::uType - u::uType - fu_prev::resType - fu::resType - p::pType - uf::ufType - linsolve::L - J::jType - jac_config::JC +@concrete mutable struct TrustRegionCache{iip, trustType, floatType} <: + AbstractNonlinearSolveCache{iip} + f + alg + u_prev + u + fu_prev + fu + fu2 + p + uf + linsolve + J + jac_cache force_stop::Bool maxiters::Int - internalnorm::INType - retcode::SciMLBase.ReturnCode.T - abstol::tolType - prob::probType + internalnorm + retcode::ReturnCode.T + abstol + prob radius_update_scheme::RadiusUpdateSchemes.T trust_r::trustType max_trust_r::trustType - step_threshold::suType + step_threshold shrink_threshold::trustType expand_threshold::trustType shrink_factor::trustType expand_factor::trustType loss::floatType loss_new::floatType - H::jType - g::resType + H + g shrink_counter::Int - step_size::su2Type - u_tmp::tmpType - fu_new::resType + step_size + u_tmp + fu_new make_new_J::Bool r::floatType p1::floatType @@ -239,75 +199,19 @@ mutable struct TrustRegionCache{iip, fType, algType, uType, resType, pType, p4::floatType ϵ::floatType stats::NLStats - - function TrustRegionCache{iip}(f::fType, alg::algType, u_prev::uType, u::uType, - fu_prev::resType, fu::resType, p::pType, - uf::ufType, linsolve::L, J::jType, jac_config::JC, - force_stop::Bool, maxiters::Int, internalnorm::INType, - retcode::SciMLBase.ReturnCode.T, abstol::tolType, - prob::probType, - radius_update_scheme::RadiusUpdateSchemes.T, - trust_r::trustType, - max_trust_r::trustType, step_threshold::suType, - shrink_threshold::trustType, expand_threshold::trustType, - shrink_factor::trustType, expand_factor::trustType, - loss::floatType, loss_new::floatType, H::jType, - g::resType, shrink_counter::Int, step_size::su2Type, - u_tmp::tmpType, fu_new::resType, make_new_J::Bool, - r::floatType, p1::floatType, p2::floatType, - p3::floatType, p4::floatType, ϵ::floatType, - stats::NLStats) where {iip, fType, algType, uType, - resType, pType, INType, - tolType, probType, ufType, L, - jType, JC, floatType, trustType, - suType, su2Type, tmpType} - new{iip, fType, algType, uType, resType, pType, - INType, tolType, probType, ufType, L, jType, JC, floatType, - trustType, suType, su2Type, tmpType}(f, alg, u_prev, u, fu_prev, fu, p, uf, - linsolve, J, - jac_config, force_stop, - maxiters, internalnorm, retcode, - abstol, prob, radius_update_scheme, - trust_r, max_trust_r, - step_threshold, shrink_threshold, - expand_threshold, shrink_factor, - expand_factor, loss, - loss_new, H, g, shrink_counter, - step_size, u_tmp, fu_new, - make_new_J, r, p1, p2, p3, p4, ϵ, stats) - end -end - -function jacobian_caches(alg::TrustRegion, f, u, p, ::Val{false}) - J = ArrayInterface.undefmatrix(u) - JacobianWrapper(f, p), nothing, J, zero(u), nothing end -function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::TrustRegion, - args...; - alias_u0 = false, - maxiters = 1000, - abstol = 1e-8, - internalnorm = DEFAULT_NORM, - kwargs...) where {uType, iip} - if alias_u0 - u = prob.u0 - else - u = deepcopy(prob.u0) - end +function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::TrustRegion, args...; + alias_u0 = false, maxiters = 1000, abstol = 1e-8, internalnorm = DEFAULT_NORM, + linsolve_kwargs=(;), kwargs...) where {uType, iip} + @unpack f, u0, p = prob + u = alias_u0 ? u0 : deepcopy(u0) u_prev = zero(u) - f = prob.f - p = prob.p - if iip - fu = zero(u) - f(fu, u, p) - else - fu = f(u, p) - end - fu_prev = zero(fu) + fu1 = evaluate_f(prob, u) + fu_prev = zero(fu1) - loss = get_loss(fu) - uf, linsolve, J, u_tmp, jac_config = jacobian_caches(alg, f, u, p, Val(iip)) + loss = get_loss(fu1) + uf, linsolve, J, fu2, jac_cache, du = jacobian_caches(alg, f, u, p, Val(iip); linsolve_kwargs) radius_update_scheme = alg.radius_update_scheme max_trust_radius = convert(eltype(u), alg.max_trust_radius) @@ -319,18 +223,18 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::TrustRegion, expand_factor = convert(eltype(u), alg.expand_factor) # Set default trust region radius if not specified if iszero(max_trust_radius) - max_trust_radius = convert(eltype(u), max(norm(fu), maximum(u) - minimum(u))) + max_trust_radius = convert(eltype(u), max(norm(fu1), maximum(u) - minimum(u))) end if iszero(initial_trust_radius) initial_trust_radius = convert(eltype(u), max_trust_radius / 11) end loss_new = loss - H = ArrayInterface.undefmatrix(u) - g = zero(fu) + H = zero(J) + g = _mutable_zero(fu1) shrink_counter = 0 step_size = zero(u) - fu_new = zero(fu) + fu_new = zero(fu1) make_new_J = true r = loss @@ -358,12 +262,12 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::TrustRegion, p3 = convert(eltype(u), 6.0) # c6 p4 = convert(eltype(u), 0.0) if iip - auto_jacvec!(g, (fu, x) -> f(fu, x, p), u, fu) + auto_jacvec!(g, (fu, x) -> f(fu, x, p), u, fu1) else if isa(u, Number) g = ForwardDiff.derivative(x -> f(x, p), u) else - g = auto_jacvec(x -> f(x, p), u, fu) + g = auto_jacvec(x -> f(x, p), u, fu1) end end initial_trust_radius = convert(eltype(u), p1 * norm(g)) @@ -375,7 +279,7 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::TrustRegion, p2 = convert(eltype(u), 1 / 4) # c5 p3 = convert(eltype(u), 12) # c6 p4 = convert(eltype(u), 1.0e18) # M - initial_trust_radius = convert(eltype(u), p1 * (norm(fu)^0.99)) + initial_trust_radius = convert(eltype(u), p1 * (norm(fu1)^0.99)) elseif radius_update_scheme === RadiusUpdateSchemes.Bastin step_threshold = convert(eltype(u), 0.05) shrink_threshold = convert(eltype(u), 0.05) @@ -387,29 +291,25 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::TrustRegion, initial_trust_radius = convert(eltype(u), 1.0) end - return TrustRegionCache{iip}(f, alg, u_prev, u, fu_prev, fu, p, uf, linsolve, J, - jac_config, - false, maxiters, internalnorm, - ReturnCode.Default, abstol, prob, radius_update_scheme, - initial_trust_radius, - max_trust_radius, step_threshold, shrink_threshold, - expand_threshold, shrink_factor, expand_factor, loss, - loss_new, H, g, shrink_counter, step_size, u_tmp, fu_new, - make_new_J, r, p1, p2, p3, p4, ϵ, NLStats(1, 0, 0, 0, 0)) + return TrustRegionCache{iip}(f, alg, u_prev, u, fu_prev, fu1, fu2, p, uf, linsolve, J, + jac_cache, false, maxiters, internalnorm, ReturnCode.Default, abstol, prob, + radius_update_scheme, initial_trust_radius, max_trust_radius, step_threshold, + shrink_threshold, expand_threshold, shrink_factor, expand_factor, loss, loss_new, + H, g, shrink_counter, step_size, du, fu_new, make_new_J, r, p1, p2, p3, p4, ϵ, + NLStats(1, 0, 0, 0, 0)) end function perform_step!(cache::TrustRegionCache{true}) @unpack make_new_J, J, fu, f, u, p, u_tmp, alg, linsolve = cache if cache.make_new_J - jacobian!(J, cache) + jacobian!!(J, cache) mul!(cache.H, J, J) mul!(cache.g, J, fu) cache.stats.njacs += 1 end - linres = dolinsolve(alg.precs, linsolve, A = cache.H, b = _vec(cache.g), - linu = _vec(u_tmp), - p = p, reltol = cache.abstol) + linres = dolinsolve(alg.precs, linsolve; A = cache.H, b = _vec(cache.g), + linu = _vec(u_tmp), p, reltol = cache.abstol) cache.linsolve = linres.cache cache.u_tmp .= -1 .* u_tmp dogleg!(cache) @@ -428,7 +328,7 @@ function perform_step!(cache::TrustRegionCache{false}) @unpack make_new_J, fu, f, u, p = cache if make_new_J - J = jacobian(cache, f) + J = jacobian!!(cache.J, cache) cache.H = J * J cache.g = J * fu cache.stats.njacs += 1 @@ -449,23 +349,16 @@ function perform_step!(cache::TrustRegionCache{false}) return nothing end -function retrospective_step!(cache::TrustRegionCache{true}) +function retrospective_step!(cache::TrustRegionCache) @unpack J, fu_prev, fu, u_prev, u = cache - jacobian!(J, cache) - mul!(cache.H, J, J) - mul!(cache.g, J, fu) - cache.stats.njacs += 1 - @unpack H, g, step_size = cache - - return -(get_loss(fu_prev) - get_loss(fu)) / - (step_size' * g + step_size' * H * step_size / 2) -end - -function retrospective_step!(cache::TrustRegionCache{false}) - @unpack J, fu_prev, fu, u_prev, u, f = cache - J = jacobian(cache, f) - cache.H = J * J - cache.g = J * fu + J = jacobian!!(deepcopy(J), cache) + if J isa Number + cache.H = J * J + cache.g = J * fu + else + mul!(cache.H, J, J) + mul!(cache.g, J, fu) + end cache.stats.njacs += 1 @unpack H, g, step_size = cache @@ -642,20 +535,20 @@ function take_step!(cache::TrustRegionCache{false}) end function jvp!(cache::TrustRegionCache{false}) - @unpack f, u, fu, p = cache + @unpack f, u, fu, uf = cache if isa(u, Number) - return value_derivative(x -> f(x, p), u) + return value_derivative(uf, u) end - return auto_jacvec(x -> f(x, p), u, fu) + return auto_jacvec(uf, u, fu) end function jvp!(cache::TrustRegionCache{true}) - @unpack g, f, u, fu, p = cache + @unpack g, f, u, fu, uf = cache if isa(u, Number) - return value_derivative(x -> f(x, p), u) + return value_derivative(uf, u) end - auto_jacvec!(g, (fu, x) -> f(fu, x, p), u, fu) - g + auto_jacvec!(g, uf, u, fu) + return g end function SciMLBase.solve!(cache::TrustRegionCache) @@ -671,8 +564,8 @@ function SciMLBase.solve!(cache::TrustRegionCache) cache.retcode = ReturnCode.Success end - SciMLBase.build_solution(cache.prob, cache.alg, cache.u, cache.fu; - retcode = cache.retcode, stats = cache.stats) + return SciMLBase.build_solution(cache.prob, cache.alg, cache.u, cache.fu; cache.retcode, + cache.stats) end function SciMLBase.reinit!(cache::TrustRegionCache{iip}, u0 = cache.u; p = cache.p, diff --git a/src/utils.jl b/src/utils.jl index 9d72e230f..7498d5afa 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -2,25 +2,41 @@ @inline UNITLESS_ABS2(x) = real(abs2(x)) @inline DEFAULT_NORM(u::Union{AbstractFloat, Complex}) = @fastmath abs(u) @inline function DEFAULT_NORM(u::Array{T}) where {T <: Union{AbstractFloat, Complex}} - sqrt(real(sum(abs2, u)) / length(u)) + return sqrt(real(sum(abs2, u)) / length(u)) end -@inline function DEFAULT_NORM(u::StaticArraysCore.StaticArray{ - T, -}) where { - T <: Union{ - AbstractFloat, - Complex}} - sqrt(real(sum(abs2, u)) / length(u)) +@inline function DEFAULT_NORM(u::StaticArray{<:Union{AbstractFloat, Complex}}) + return sqrt(real(sum(abs2, u)) / length(u)) end -@inline function DEFAULT_NORM(u::RecursiveArrayTools.AbstractVectorOfArray) - sum(sqrt(real(sum(UNITLESS_ABS2, _u)) / length(_u)) for _u in u.u) +@inline function DEFAULT_NORM(u::AbstractVectorOfArray) + return sum(sqrt(real(sum(UNITLESS_ABS2, _u)) / length(_u)) for _u in u.u) end @inline DEFAULT_NORM(u::AbstractArray) = sqrt(real(sum(UNITLESS_ABS2, u)) / length(u)) @inline DEFAULT_NORM(u) = norm(u) -alg_autodiff(alg::AbstractNewtonAlgorithm{CS, AD}) where {CS, AD} = AD +alg_autodiff(alg::AbstractNewtonAlgorithm{<:AbstractFiniteDifferencesMode}) = false +alg_autodiff(alg::AbstractNewtonAlgorithm) = true alg_autodiff(alg) = false +""" + default_adargs_to_adtype(; chunk_size = Val{0}(), autodiff = Val{true}(), + standardtag = Val{true}(), diff_type = Val{:forward}) + +Construct the AD type from the arguments. This is mostly needed for compatibility with older +code. +""" +function default_adargs_to_adtype(; chunk_size = Val{0}(), autodiff = Val{true}(), + standardtag = Val{true}(), diff_type = Val{:forward}()) + ad = _unwrap_val(autodiff) + # Old API + if ad isa Bool + # FIXME: standardtag is not the Tag + ad && return AutoForwardDiff(; chunksize = _unwrap_val(chunk_size), + tag = _unwrap_val(standardtag)) + return AutoFiniteDiff(; fdtype = diff_type) + end + return ad +end + """ value_derivative(f, x) @@ -33,57 +49,17 @@ function value_derivative(f::F, x::R) where {F, R} end # Todo: improve this dispatch -function value_derivative(f::F, x::StaticArraysCore.SVector) where {F} +function value_derivative(f::F, x::SVector) where {F} f(x), ForwardDiff.jacobian(f, x) end -value(x) = x -value(x::Dual) = ForwardDiff.value(x) -value(x::AbstractArray{<:Dual}) = map(ForwardDiff.value, x) - -_vec(v) = vec(v) -_vec(v::Number) = v -_vec(v::AbstractVector) = v - -function alg_difftype(alg::AbstractNewtonAlgorithm{ - CS, - AD, - FDT, - ST, - CJ, -}) where {CS, AD, FDT, ST, CJ} - FDT -end +@inline value(x) = x +@inline value(x::Dual) = ForwardDiff.value(x) +@inline value(x::AbstractArray{<:Dual}) = map(ForwardDiff.value, x) -function concrete_jac(alg::AbstractNewtonAlgorithm{ - CS, - AD, - FDT, - ST, - CJ, -}) where {CS, AD, FDT, ST, CJ} - CJ -end - -function get_chunksize(alg::AbstractNewtonAlgorithm{ - CS, - AD, - FDT, - ST, - CJ, -}) where {CS, AD, FDT, ST, CJ} - Val(CS) -end - -function standardtag(alg::AbstractNewtonAlgorithm{ - CS, - AD, - FDT, - ST, - CJ, -}) where {CS, AD, FDT, ST, CJ} - ST -end +@inline _vec(v) = vec(v) +@inline _vec(v::Number) = v +@inline _vec(v::AbstractVector) = v DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, cachedata) = nothing, nothing @@ -94,10 +70,8 @@ function dolinsolve(precs::P, linsolve; A = nothing, linu = nothing, b = nothing b !== nothing && (linsolve.b = b) linu !== nothing && (linsolve.u = linu) - Plprev = linsolve.Pl isa LinearSolve.ComposePreconditioner ? linsolve.Pl.outer : - linsolve.Pl - Prprev = linsolve.Pr isa LinearSolve.ComposePreconditioner ? linsolve.Pr.outer : - linsolve.Pr + Plprev = linsolve.Pl isa ComposePreconditioner ? linsolve.Pl.outer : linsolve.Pl + Prprev = linsolve.Pr isa ComposePreconditioner ? linsolve.Pr.outer : linsolve.Pr _Pl, _Pr = precs(linsolve.A, du, u, p, nothing, A !== nothing, Plprev, Prprev, cachedata) @@ -110,29 +84,25 @@ function dolinsolve(precs::P, linsolve; A = nothing, linu = nothing, b = nothing linsolve.Pr = Pr end - linres = if reltol === nothing - solve!(linsolve) - else - solve!(linsolve; reltol) - end + linres = reltol === nothing ? solve!(linsolve) : solve!(linsolve; reltol) return linres end function wrapprecs(_Pl, _Pr, weight) if _Pl !== nothing - Pl = LinearSolve.ComposePreconditioner(LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - _Pl) + Pl = ComposePreconditioner(InvPreconditioner(Diagonal(_vec(weight))), _Pl) else - Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))) + Pl = InvPreconditioner(Diagonal(_vec(weight))) end if _Pr !== nothing - Pr = LinearSolve.ComposePreconditioner(Diagonal(_vec(weight)), _Pr) + Pr = ComposePreconditioner(Diagonal(_vec(weight)), _Pr) else Pr = Diagonal(_vec(weight)) end - Pl, Pr + + return Pl, Pr end function _nfcount(N, ::Type{diff_type}) where {diff_type} @@ -143,17 +113,55 @@ function _nfcount(N, ::Type{diff_type}) where {diff_type} else tmp = 2N end - tmp + return tmp end -function get_loss(fu) - return norm(fu)^2 / 2 -end +get_loss(fu) = norm(fu)^2 / 2 function rfunc(r::R, c2::R, M::R, γ1::R, γ2::R, β::R) where {R <: Real} # R-function for adaptive trust region method - if (r >= c2) + if (r ≥ c2) return (2 * (M - 1 - γ2) * atan(r - c2) + (1 + γ2)) / π else return (1 - γ1 - β) * (exp(r - c2) + β / (1 - γ1 - β)) end end + +concrete_jac(_) = nothing +concrete_jac(::AbstractNewtonAlgorithm{CJ}) where {CJ} = CJ + +# Circumventing https://github.com/SciML/RecursiveArrayTools.jl/issues/277 +_iszero(x) = iszero(x) +_iszero(x::ArrayPartition) = all(_iszero, x.x) + +_mutable_zero(x) = zero(x) +_mutable_zero(x::SArray) = MArray(x) + +_mutable(x) = x +_mutable(x::SArray) = MArray(x) +_maybe_mutable(x, ::AbstractFiniteDifferencesMode) = _mutable(x) +# The shadow allocated for Enzyme needs to be mutable +_maybe_mutable(x, ::AutoSparseEnzyme) = _mutable(x) +_maybe_mutable(x, _) = x + +# Helper function to get value of `f(u, p)` +function evaluate_f(prob::NonlinearProblem{uType, iip}, u) where {uType, iip} + @unpack f, u0, p = prob + if iip + fu = f.resid_prototype === nothing ? zero(u) : f.resid_prototype + f(fu, u, p) + else + fu = _mutable(f(u, p)) + end + return fu +end + +evaluate_f(cache, u; fu = nothing) = evaluate_f(cache.f, u, cache.p, Val(cache.iip); fu) + +function evaluate_f(f, u, p, ::Val{iip}; fu = nothing) where {iip} + if iip + f(fu, u, p) + return fu + else + return f(u, p) + end +end diff --git a/test/23_test_cases.jl b/test/23_test_cases.jl deleted file mode 100644 index 3cb0eb310..000000000 --- a/test/23_test_cases.jl +++ /dev/null @@ -1,510 +0,0 @@ -using NonlinearSolve, NLsolve, LinearAlgebra - -# Implementation of the 23 test problems in -# [test_nonlin](https://people.sc.fsu.edu/~jburkardt/m_src/test_nonlin/test_nonlin.html) - -# ------------------------------------- Problem 1 ------------------------------------------ -function p1_f!(out, x, p = nothing) - n = length(x) - out[1] = 1.0 - x[1] - out[2:n] .= 10.0 .* (x[2:n] .- x[1:(n - 1)] .* x[1:(n - 1)]) - nothing -end - -n = 10 -x_sol = ones(n) -x_start = ones(n) -x_start[1] = -1.2 -p1_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Generalized Rosenbrock function") - -# ------------------------------------- Problem 2 ------------------------------------------ -function p2_f!(out, x, p = nothing) - out[1] = x[1] + 10.0 * x[2] - out[2] = sqrt(5.0) * (x[3] - x[4]) - out[3] = (x[2] - 2.0 * x[3])^2 - out[4] = sqrt(10.0) * (x[1] - x[4]) * (x[1] - x[4]) - nothing -end - -n = 4 -x_sol = zeros(n) -x_start = [3.0, -1.0, 0.0, 1.0] -p2_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Powell singular function") - -# ------------------------------------- Problem 3 ------------------------------------------ -function p3_f!(out, x, p = nothing) - out[1] = 10000.0 * x[1] * x[2] - 1.0 - out[2] = exp(-x[1]) + exp(-x[2]) - 1.0001 - nothing -end - -n = 2 -x_sol = [1.098159e-05, 9.106146] -x_start = [0.0, 1.0] -p3_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Powell badly scaled function") - -# ------------------------------------- Problem 4 ------------------------------------------ -function p4_f!(out, x, p = nothing) - temp1 = x[2] - x[1] * x[1] - temp2 = x[4] - x[3] * x[3] - - out[1] = -200.0 * x[1] * temp1 - (1.0 - x[1]) - out[2] = 200.0 * temp1 + 20.2 * (x[2] - 1.0) + 19.8 * (x[4] - 1.0) - out[3] = -180.0 * x[3] * temp2 - (1.0 - x[3]) - out[4] = 180.0 * temp2 + 20.2 * (x[4] - 1.0) + 19.8 * (x[2] - 1.0) - nothing -end - -n = 4 -x_sol = ones(n) -x_start = [-3.0, -1.0, -3.0, -1.0] -p4_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Wood function") - -# ------------------------------------- Problem 5 ------------------------------------------ -function p5_f!(out, x, p = nothing) - if 0.0 < x[1] - temp = atan(x[2] / x[1]) / (2.0 * pi) - elseif x[1] < 0.0 - temp = atan(x[2] / x[1]) / (2.0 * pi) + 0.5 - else - temp = 0.25 * sign(x[2]) - end - - out[1] = 10.0 * (x[3] - 10.0 * temp) - out[2] = 10.0 * (sqrt(x[1] * x[1] + x[2] * x[2]) - 1.0) - out[3] = x[3] - nothing -end - -n = 3 -x_sol = [1.0, 0.0, 0.0] -x_start = [-1.0, 0.0, 0.0] -p5_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Helical valley function") - -# ------------------------------------- Problem 6 ------------------------------------------ -function p6_f!(out, x, p = nothing) - n = length(x) - for i in 1:29 - ti = i / 29.0 - sum1 = 0.0 - temp = 1.0 - for j in 2:n - sum1 = sum1 + j * temp * x[j] - temp = ti * temp - end - - sum2 = 0.0 - temp = 1.0 - for j in 1:n - sum2 = sum2 + temp * x[j] - temp = ti * temp - end - temp = 1.0 / ti - - for k in 1:n - out[k] = out[k] + temp * (sum1 - sum2 * sum2 - 1.0) * (k - 2.0 * ti * sum2) - temp = ti * temp - end - end - - out[1] = out[1] + 3.0 * x[1] - 2.0 * x[1] * x[1] + 2.0 * x[1]^3 - out[2] = out[2] + x[2] - x[2]^2 - 1.0 - nothing -end - -n = 2 -x_sol = [] -x_start = zeros(n) -p6_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Watson function") - -# ------------------------------------- Problem 7 ------------------------------------------ -function p7_f!(out, x, p = nothing) - n = length(x) - out .= 0.0 - for j in 1:n - t1 = 1.0 - t2 = x[j] - for i in 1:n - out[i] += t2 - t3 = 2.0 * x[j] * t2 - t1 - t1 = t2 - t2 = t3 - end - end - out ./= n - - for i in 1:n - ip1 = i - if ip1 % 2 == 0 - out[i] = out[i] + 1.0 / (ip1 * ip1 - 1) - end - end - nothing -end - -n = 2 -x_sol = [0.2113248654051871, 0.7886751345948129] -x_sol .= 2.0 .* x_sol .- 1.0 -x_start = zeros(n) -for i in 1:n - x_start[i] = (2 * i - n) / (n + 1) -end -p7_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Chebyquad function") - -# ------------------------------------- Problem 8 ------------------------------------------ -function p8_f!(out, x, p = nothing) - n = length(x) - out[1:(n - 1)] .= x[1:(n - 1)] .+ sum(x) .- (n + 1) - out[n] = prod(x) - 1.0 - nothing -end - -n = 10 -x_sol = ones(n) -x_start = ones(n) ./ 2 -p8_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Brown almost linear function") - -# ------------------------------------- Problem 9 ------------------------------------------ -function p9_f!(out, x, p = nothing) - n = length(x) - h = 1.0 / (n + 1) - for k in 1:n - out[k] = 2.0 * x[k] + 0.5 * h^2 * (x[k] + k * h + 1.0)^3 - if 1 < k - out[k] = out[k] - x[k - 1] - end - if k < n - out[k] = out[k] - x[k + 1] - end - end - nothing -end - -n = 10 -x_sol = [] -x_start = ones(n) -for i in 1:n - x_start[i] = (i * (i - n - 1)) / (n + 1)^2 -end -p9_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Discrete boundary value function") - -# ------------------------------------- Problem 10 ----------------------------------------- -function p10_f!(out, x, p = nothing) - n = length(x) - h = 1.0 / (n + 1) - for k in 1:n - tk = k / (n + 1) - sum1 = 0.0 - for j in 1:k - tj = j * h - sum1 = sum1 + tj * (x[j] + tj + 1.0)^3 - end - sum2 = 0.0 - for j in k:n - tj = j * h - sum2 = sum2 + (1.0 - tj) * (x[j] + tj + 1.0)^3 - end - - out[k] = x[k] + h * ((1.0 - tk) * sum1 + tk * sum2) / 2.0 - end - nothing -end - -n = 10 -x_sol = [] -x_start = zeros(n) -for i in 1:n - x_start[i] = (i * (i - n - 1)) / (n + 1)^2 -end -p10_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Discrete integral equation function") - -# ------------------------------------- Problem 11 ----------------------------------------- -function p11_f!(out, x, p = nothing) - n = length(x) - c_sum = sum(cos.(x)) - for k in 1:n - out[k] = n - c_sum + k * (1.0 - cos(x[k])) - sin(x[k]) - end - nothing -end - -n = 10 -x_sol = [] -x_start = ones(n) / n -p11_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Trigonometric function") - -# ------------------------------------- Problem 12 ----------------------------------------- -function p12_f!(out, x, p = nothing) - n = length(x) - sum1 = 0.0 - for j in 1:n - sum1 += j * (x[j] - 1.0) - end - for k in 1:n - out[k] = x[k] - 1.0 + k * sum1 * (1.0 + 2.0 * sum1 * sum1) - end - nothing -end - -n = 10 -x_sol = ones(n) -x_start = zeros(n) -for i in 1:n - x_start[i] = 1.0 - i / n -end -p12_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Variably dimensioned function") - -# ------------------------------------- Problem 13 ----------------------------------------- -function p13_f!(out, x, p = nothing) - n = length(x) - for k in 1:n - out[k] = (3.0 - 2.0 * x[k]) * x[k] + 1.0 - if 1 < k - out[k] -= x[k - 1] - end - if k < n - out[k] -= 2.0 * x[k + 1] - end - end - nothing -end - -n = 10 -x_sol = [] -x_start = ones(n) .* (-1.0) -p13_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Broyden tridiagonal function") - -# ------------------------------------- Problem 14 ----------------------------------------- -function p14_f!(out, x, p = nothing) - n = length(x) - ml = 5 - mu = 1 - for k in 1:n - k1 = max(1, k - ml) - k2 = min(n, k + mu) - - temp = 0.0 - for j in k1:k2 - if j != k - temp += x[j] * (1.0 + x[j]) - end - end - out[k] = x[k] * (2.0 + 5.0 * x[k] * x[k]) + 1.0 - temp - end - nothing -end - -n = 10 -x_sol = [] -x_start = ones(n) .* (-1.0) -p14_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Broyden banded function") - -# ------------------------------------- Problem 15 ----------------------------------------- -function p15_f!(out, x, p = nothing) - out[1] = (x[1] * x[1] + x[2] * x[3]) - 0.0001 - out[2] = (x[1] * x[2] + x[2] * x[4]) - 1.0 - out[3] = (x[3] * x[1] + x[4] * x[3]) - 0.0 - out[4] = (x[3] * x[2] + x[4] * x[4]) - 0.0001 - nothing -end - -n = 4 -x_sol = [0.01, 50.0, 0.0, 0.01] -x_start = [1.0, 0.0, 0.0, 1.0] -p15_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Hammarling 2 by 2 matrix square root problem") - -# ------------------------------------- Problem 16 ----------------------------------------- -function p16_f!(out, x, p = nothing) - out[1] = (x[1] * x[1] + x[2] * x[4] + x[3] * x[7]) - 0.0001 - out[2] = (x[1] * x[2] + x[2] * x[5] + x[3] * x[8]) - 1.0 - out[3] = x[1] * x[3] + x[2] * x[6] + x[3] * x[9] - out[4] = x[4] * x[1] + x[5] * x[4] + x[6] * x[7] - out[5] = (x[4] * x[2] + x[5] * x[5] + x[6] * x[8]) - 0.0001 - out[6] = x[4] * x[3] + x[5] * x[6] + x[6] * x[9] - out[7] = x[7] * x[1] + x[8] * x[4] + x[9] * x[7] - out[8] = x[7] * x[2] + x[8] * x[5] + x[9] * x[8] - out[9] = (x[7] * x[3] + x[8] * x[6] + x[9] * x[9]) - 0.0001 - nothing -end - -n = 9 -x_sol = [0.01, 50.0, 0.0, 0.0, 0.01, 0.0, 0.0, 0.0, 0.01] -x_start = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] -p16_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Hammarling 3 by 3 matrix square root problem") - -# ------------------------------------- Problem 17 ----------------------------------------- -function p17_f!(out, x, p = nothing) - out[1] = x[1] + x[2] - 3.0 - out[2] = x[1]^2 + x[2]^2 - 9.0 - nothing -end - -n = 2 -x_sol = [0.0, 3.0] -x_start = [1.0, 5.0] -p17_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Dennis and Schnabel 2 by 2 example") - -# ------------------------------------- Problem 18 ----------------------------------------- -function p18_f!(out, x, p = nothing) - if x[1] != 0.0 - out[1] = x[2]^2 * (1.0 - exp(-x[1] * x[1])) / x[1] - else - out[1] = 0.0 - end - if x[2] != 0.0 - out[2] = x[1] * (1.0 - exp(-x[2] * x[2])) / x[2] - else - out[2] = 0.0 - end - nothing -end - -n = 2 -x_sol = zeros(n) -x_start = [2.0, 2.0] -p18_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Sample problem 18") - -# ------------------------------------- Problem 19 ----------------------------------------- -function p19_f!(out, x, p = nothing) - out[1] = x[1] * (x[1]^2 + x[2]^2) - out[2] = x[2] * (x[1]^2 + x[2]^2) - nothing -end - -n = 2 -x_sol = zeros(n) -x_start = [3.0, 3.0] -p19_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Sample problem 19") - -# ------------------------------------- Problem 20 ----------------------------------------- -function p20_f!(out, x, p = nothing) - out[1] = x[1] * (x[1] - 5.0)^2 - nothing -end - -n = 1 -x_sol = [5.0] # OR [0.0]... -x_start = [1.0] -p20_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Scalar problem f(x) = x(x - 5)^2") - -# ------------------------------------- Problem 21 ----------------------------------------- -function p21_f!(out, x, p = nothing) - out[1] = x[1] - x[2]^3 + 5.0 * x[2]^2 - 2.0 * x[2] - 13.0 - out[2] = x[1] + x[2]^3 + x[2]^2 - 14.0 * x[2] - 29.0 - nothing -end - -n = 2 -x_sol = [5.0, 4.0] -x_start = [0.5, -2.0] -p21_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Freudenstein-Roth function") - -# ------------------------------------- Problem 22 ----------------------------------------- -function p22_f!(out, x, p = nothing) - out[1] = x[1] * x[1] - x[2] + 1.0 - out[2] = x[1] - cos(0.5 * pi * x[2]) - nothing -end - -n = 2 -x_sol = [0.0, 1.0] -x_start = [1.0, 0.0] -p22_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Boggs function") - -# ------------------------------------- Problem 23 ----------------------------------------- -function p23_f!(out, x, p = nothing) - c = 0.9 - out[1:n] = x[1:n] - μ = zeros(n) - for i in 1:n - μ[i] = (2 * i) / (2 * n) - end - for i in 1:n - s = 0.0 - for j in 1:n - s = s + (μ[i] * x[j]) / (μ[i] + μ[j]) - end - term = 1.0 - c * s / (2 * n) - out[i] -= 1.0 / term - end - nothing -end - -n = 10 -x_sol = [] -x_start = ones(n) -p23_dict = Dict("n" => n, "start" => x_start, "sol" => x_sol, - "title" => "Chandrasekhar function") - -# ----------------------------------- Solve problems --------------------------------------- -problems = (p1_f!, p2_f!, p3_f!, p4_f!, p5_f!, p6_f!, p7_f!, p8_f!, p9_f!, p10_f!, p11_f!, - p12_f!, p13_f!, p14_f!, p15_f!, p16_f!, p17_f!, p18_f!, p19_f!, p20_f!, p21_f!, - p22_f!, p23_f!) -dicts = (p1_dict, p2_dict, p3_dict, p4_dict, p5_dict, p6_dict, p7_dict, p8_dict, p9_dict, - p10_dict, p11_dict, p12_dict, p13_dict, p14_dict, p15_dict, p16_dict, p17_dict, - p18_dict, p19_dict, p20_dict, p21_dict, p22_dict, p23_dict) -algs = (NewtonRaphson(), TrustRegion(), LevenbergMarquardt()) -names = ("NewtonRaphson", "TrustRegion", "LevenbergMarquardt") - -for (problem, dict) in zip(problems, dicts) - for (alg, name) in zip(algs, names) - local x = dict["start"] - local nlprob = NonlinearProblem(problem, x) - local out = similar(x) - try - problem(out, - solve(nlprob, alg, abstol = 1e-15, reltol = 1e-15).u, nothing) - dict["error_" * name] = "" - catch - # println("Error in $name") - dict["error_" * name] = "(Singular error)" - end - dict["out_" * name] = out - end - local x = dict["start"] - local nlprob = NonlinearProblem(problem, x) - sol = nlsolve(problem, x, xtol = 1e-15, ftol = 1e-15) - dict["norm_nlsolve"] = sol.residual_norm -end - -# ----------------------------------- Print results ---------------------------------------- -i_str = i_str = rpad("nr", 3, " ") -title_str = rpad("Problem", 50, " ") -n_str = rpad("n", 5, " ") -norm_str = rpad(names[1], 20, " ") * rpad(names[2], 20, " ") * rpad(names[3], 20, " ") * - rpad("nlsolve", 20, " ") -println("$i_str $title_str $n_str $norm_str") - -for (i, dict) in enumerate(dicts) - local i_str = rpad(string(i), 3, " ") - local title_str = rpad(dict["title"], 50, " ") - local n_str = rpad(string(dict["n"]), 5, " ") - local norm_str = "" - for (alg, name) in zip(algs, names) - norm_str *= rpad(string(trunc(norm(dict["out_" * name]); sigdigits = 5)), 20, " ") - end - norm_str *= rpad(string(round(dict["norm_nlsolve"]; sigdigits = 5)), 20, " ") - println("$i_str $title_str $n_str $norm_str") -end diff --git a/test/basictests.jl b/test/basictests.jl index 05a0152fa..54e63e93d 100644 --- a/test/basictests.jl +++ b/test/basictests.jl @@ -1,774 +1,404 @@ -using NonlinearSolve -using StaticArrays -using BenchmarkTools -using LinearSolve -using Random -using LinearAlgebra -using Test +using BenchmarkTools, LinearSolve, NonlinearSolve, StaticArrays, Random, LinearAlgebra, + Test, ForwardDiff, Zygote, Enzyme, SparseDiffTools -# --- NewtonRaphson tests --- - -function benchmark_immutable(f, u0) - probN = NonlinearProblem{false}(f, u0) - solver = init(probN, NewtonRaphson(), abstol = 1e-9) - sol = solve!(solver) -end +_nameof(x) = applicable(nameof, x) ? nameof(x) : _nameof(typeof(x)) -function benchmark_mutable(f, u0) - probN = NonlinearProblem{false}(f, u0) - solver = init(probN, NewtonRaphson(), abstol = 1e-9) - sol = solve!(solver) -end - -function benchmark_scalar(f, u0) - probN = NonlinearProblem{false}(f, u0) - sol = (solve(probN, NewtonRaphson(), abstol = 1e-9)) -end +quadratic_f(u, p) = u .* u .- p +quadratic_f!(du, u, p) = (du .= u .* u .- p) +quadratic_f2(u, p) = @. p[1] * u * u - p[2] -function ff(u, p) - u .* u .- 2 +function newton_fails(u, p) + return 0.010000000000000002 .+ + 10.000000000000002 ./ (1 .+ + (0.21640425613334457 .+ + 216.40425613334457 ./ (1 .+ + (0.21640425613334457 .+ + 216.40425613334457 ./ + (1 .+ 0.0006250000000000001(u .^ 2.0))) .^ 2.0)) .^ 2.0) .- + 0.0011552453009332421u .- p end -const cu0 = @SVector[1.0, 1.0] -function sf(u, p) - u * u - 2 -end -const csu0 = 1.0 -u0 = [1.0, 1.0] - -sol = benchmark_immutable(ff, cu0) -@test sol.retcode === ReturnCode.Success -@test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -sol = benchmark_mutable(ff, u0) -@test sol.retcode === ReturnCode.Success -@test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -sol = benchmark_scalar(sf, csu0) -@test sol.retcode === ReturnCode.Success -@test abs(sol.u * sol.u - 2) < 1e-9 - -# @test (@ballocated benchmark_immutable(ff, cu0)) < 200 -# @test (@ballocated benchmark_mutable(ff, cu0)) < 200 -# @test (@ballocated benchmark_scalar(sf, csu0)) < 400 - -function benchmark_inplace(f, u0, linsolve, precs) - probN = NonlinearProblem{true}(f, u0) - solver = init(probN, NewtonRaphson(; linsolve, precs), abstol = 1e-9) - sol = solve!(solver) -end - -function ffiip(du, u, p) - du .= u .* u .- 2 -end -u0 = [1.0, 1.0] - -precs = [ - NonlinearSolve.DEFAULT_PRECS, - (args...) -> (Diagonal(rand!(similar(u0))), nothing) -] -for prec in precs, linsolve in (nothing, KrylovJL_GMRES()) - sol = benchmark_inplace(ffiip, u0, linsolve, prec) - @test sol.retcode === ReturnCode.Success - @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -end - -u0 = [1.0, 1.0] -probN = NonlinearProblem{true}(ffiip, u0) -solver = init(probN, NewtonRaphson(), abstol = 1e-9) -@test (@ballocated solve!(solver)) <= 64 - -# AD Tests -using ForwardDiff - -# Immutable -f, u0 = (u, p) -> u .* u .- p, @SVector[1.0, 1.0] +# --- NewtonRaphson tests --- -g = function (p) - probN = NonlinearProblem{false}(f, csu0, p) - sol = solve(probN, NewtonRaphson(), abstol = 1e-9) - return sol.u[end] -end +@testset "NewtonRaphson" begin + function benchmark_nlsolve_oop(f, u0, p = 2.0; linesearch = LineSearch()) + prob = NonlinearProblem{false}(f, u0, p) + return solve(prob, NewtonRaphson(; linesearch), abstol = 1e-9) + end -for p in 1.0:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end + function benchmark_nlsolve_iip(f, u0, p = 2.0; linsolve, precs, + linesearch = LineSearch()) + prob = NonlinearProblem{true}(f, u0, p) + return solve(prob, NewtonRaphson(; linsolve, precs, linesearch), abstol = 1e-9) + end -# Scalar -f, u0 = (u, p) -> u * u - p, 1.0 + @testset "LineSearch: $(_nameof(lsmethod)) LineSearch AD: $(_nameof(ad))" for lsmethod in (Static(), + StrongWolfe(), BackTracking(), HagerZhang(), MoreThuente()), + ad in (AutoFiniteDiff(), AutoZygote()) + + linesearch = LineSearch(; method = lsmethod, autodiff = ad) + u0s = VERSION ≥ v"1.9" ? ([1.0, 1.0], @SVector[1.0, 1.0], 1.0) : ([1.0, 1.0], 1.0) + + @testset "[OOP] u0: $(typeof(u0))" for u0 in u0s + sol = benchmark_nlsolve_oop(quadratic_f, u0; linesearch) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) + + cache = init(NonlinearProblem{false}(quadratic_f, u0, 2.0), NewtonRaphson(), + abstol = 1e-9) + @test (@ballocated solve!($cache)) < 200 + end + + precs = [NonlinearSolve.DEFAULT_PRECS, :Random] + + @testset "[IIP] u0: $(typeof(u0)) precs: $(_nameof(prec)) linsolve: $(_nameof(linsolve))" for u0 in ([ + 1.0, 1.0],), prec in precs, linsolve in (nothing, KrylovJL_GMRES()) + ad isa AutoZygote && continue + if prec === :Random + prec = (args...) -> (Diagonal(randn!(similar(u0))), nothing) + end + sol = benchmark_nlsolve_iip(quadratic_f!, u0; linsolve, precs = prec, + linesearch) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) + + cache = init(NonlinearProblem{true}(quadratic_f!, u0, 2.0), + NewtonRaphson(; linsolve, precs = prec), abstol = 1e-9) + @test (@ballocated solve!($cache)) ≤ 64 + end + end -# NewtonRaphson -g = function (p) - probN = NonlinearProblem{false}(f, oftype(p, u0), p) - sol = solve(probN, NewtonRaphson(), abstol = 1e-10) - return sol.u -end + if VERSION ≥ v"1.9" + @testset "[OOP] [Immutable AD]" begin + for p in 1.0:0.1:100.0 + @test begin + res = benchmark_nlsolve_oop(quadratic_f, @SVector[1.0, 1.0], p) + res_true = sqrt(p) + all(res.u .≈ res_true) + end + @test ForwardDiff.derivative(p -> benchmark_nlsolve_oop(quadratic_f, + @SVector[1.0, 1.0], p).u[end], p) ≈ 1 / (2 * sqrt(p)) + end + end + end -@test ForwardDiff.derivative(g, 1.0) ≈ 0.5 + @testset "[OOP] [Scalar AD]" begin + for p in 1.0:0.1:100.0 + @test begin + res = benchmark_nlsolve_oop(quadratic_f, 1.0, p) + res_true = sqrt(p) + res.u ≈ res_true + end + @test ForwardDiff.derivative(p -> benchmark_nlsolve_oop(quadratic_f, 1.0, p).u, + p) ≈ + 1 / (2 * sqrt(p)) + end + end -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end + if VERSION ≥ v"1.9" + t = (p) -> [sqrt(p[2] / p[1])] + p = [0.9, 50.0] + @test benchmark_nlsolve_oop(quadratic_f2, 0.5, p).u ≈ sqrt(p[2] / p[1]) + @test ForwardDiff.jacobian(p -> [benchmark_nlsolve_oop(quadratic_f2, 0.5, p).u], + p) ≈ + ForwardDiff.jacobian(t, p) + end -f = (u, p) -> p[1] * u * u - p[2] -t = (p) -> [sqrt(p[2] / p[1])] -p = [0.9, 50.0] -gnewton = function (p) - probN = NonlinearProblem{false}(f, 0.5, p) - sol = solve(probN, NewtonRaphson()) - return [sol.u] -end -@test gnewton(p) ≈ [sqrt(p[2] / p[1])] -@test ForwardDiff.jacobian(gnewton, p) ≈ ForwardDiff.jacobian(t, p) - -# Iterator interface -f = (u, p) -> u * u - p -g = function (p_range) - probN = NonlinearProblem{false}(f, 0.5, p_range[begin]) - cache = init(probN, NewtonRaphson(); maxiters = 100, abstol = 1e-10) - sols = zeros(length(p_range)) - for (i, p) in enumerate(p_range) - reinit!(cache, cache.u; p = p) - sol = solve!(cache) - sols[i] = sol.u + # Iterator interface + function nlprob_iterator_interface(f, p_range, ::Val{iip}) where {iip} + probN = NonlinearProblem{iip}(f, iip ? [0.5] : 0.5, p_range[begin]) + cache = init(probN, NewtonRaphson(); maxiters = 100, abstol = 1e-10) + sols = zeros(length(p_range)) + for (i, p) in enumerate(p_range) + reinit!(cache, iip ? [cache.u[1]] : cache.u; p = p) + sol = solve!(cache) + sols[i] = iip ? sol.u[1] : sol.u + end + return sols end - return sols -end -p = range(0.01, 2, length = 200) -@test g(p) ≈ sqrt.(p) - -f = (res, u, p) -> (res[begin] = u[1] * u[1] - p) -g = function (p_range) - probN = NonlinearProblem{true}(f, [0.5], p_range[begin]) - cache = init(probN, NewtonRaphson(); maxiters = 100, abstol = 1e-10) - sols = zeros(length(p_range)) - for (i, p) in enumerate(p_range) - reinit!(cache, [cache.u[1]]; p = p) - sol = solve!(cache) - sols[i] = sol.u[1] + p = range(0.01, 2, length = 200) + @test nlprob_iterator_interface(quadratic_f, p, Val(false)) ≈ sqrt.(p) + @test nlprob_iterator_interface(quadratic_f!, p, Val(true)) ≈ sqrt.(p) + + @testset "ADType: $(autodiff) u0: $(_nameof(u0))" for autodiff in (false, true, + AutoSparseForwardDiff(), AutoSparseFiniteDiff(), AutoZygote(), + AutoSparseZygote(), AutoSparseEnzyme()), u0 in (1.0, [1.0, 1.0]) + probN = NonlinearProblem(quadratic_f, u0, 2.0) + @test all(solve(probN, NewtonRaphson(; autodiff)).u .≈ sqrt(2.0)) end - return sols -end -p = range(0.01, 2, length = 200) -@test g(p) ≈ sqrt.(p) - -# Error Checks - -f, u0 = (u, p) -> u .* u .- 2.0, @SVector[1.0, 1.0] -probN = NonlinearProblem(f, u0) - -@test solve(probN, NewtonRaphson()).u[end] ≈ sqrt(2.0) -@test solve(probN, NewtonRaphson(; autodiff = false)).u[end] ≈ sqrt(2.0) - -for u0 in [1.0, [1, 1.0]] - local f, probN, sol - f = (u, p) -> u .* u .- 2.0 - probN = NonlinearProblem(f, u0) - sol = sqrt(2) * u0 - - @test solve(probN, NewtonRaphson()).u ≈ sol - @test solve(probN, NewtonRaphson()).u ≈ sol - @test solve(probN, NewtonRaphson(; autodiff = false)).u ≈ sol end # --- TrustRegion tests --- -function benchmark_immutable(f, u0, radius_update_scheme) - probN = NonlinearProblem{false}(f, u0) - solver = init(probN, TrustRegion(radius_update_scheme = radius_update_scheme), - abstol = 1e-9) - sol = solve!(solver) -end - -function benchmark_mutable(f, u0, radius_update_scheme) - probN = NonlinearProblem{false}(f, u0) - solver = init(probN, TrustRegion(radius_update_scheme = radius_update_scheme), - abstol = 1e-9) - sol = solve!(solver) -end - -function benchmark_scalar(f, u0, radius_update_scheme) - probN = NonlinearProblem{false}(f, u0) - sol = (solve(probN, TrustRegion(radius_update_scheme = radius_update_scheme), - abstol = 1e-9)) -end - -function ff(u, p = nothing) - u .* u .- 2 -end - -function sf(u, p = nothing) - u * u - 2 -end - -u0 = [1.0, 1.0] -radius_update_schemes = [RadiusUpdateSchemes.Simple, RadiusUpdateSchemes.Hei, - RadiusUpdateSchemes.Yuan, RadiusUpdateSchemes.Fan, RadiusUpdateSchemes.Bastin] - -for radius_update_scheme in radius_update_schemes - sol = benchmark_immutable(ff, cu0, radius_update_scheme) - @test sol.retcode === ReturnCode.Success - @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) - sol = benchmark_mutable(ff, u0, radius_update_scheme) - @test sol.retcode === ReturnCode.Success - @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) - sol = benchmark_scalar(sf, csu0, radius_update_scheme) - @test sol.retcode === ReturnCode.Success - @test abs(sol.u * sol.u - 2) < 1e-9 -end - -function benchmark_inplace(f, u0, radius_update_scheme) - probN = NonlinearProblem{true}(f, u0) - solver = init(probN, TrustRegion(; radius_update_scheme), abstol = 1e-9) - sol = solve!(solver) -end - -function ffiip(du, u, p = nothing) - du .= u .* u .- 2 -end -u0 = [1.0, 1.0] - -for radius_update_scheme in radius_update_schemes - sol = benchmark_inplace(ffiip, u0, radius_update_scheme) - @test sol.retcode === ReturnCode.Success - @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -end - -for radius_update_scheme in radius_update_schemes - probN = NonlinearProblem{true}(ffiip, u0) - solver = init(probN, TrustRegion(radius_update_scheme = radius_update_scheme), - abstol = 1e-9) - @test (@ballocated solve!(solver)) < 200 -end - -# AD Tests -using ForwardDiff - -# Immutable -f, u0 = (u, p) -> u .* u .- p, @SVector[1.0, 1.0] - -g = function (p) - probN = NonlinearProblem{false}(f, csu0, p) - sol = solve(probN, TrustRegion(), abstol = 1e-9) - return sol.u[end] -end - -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end - -g = function (p) - probN = NonlinearProblem{false}(f, csu0, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Hei), - abstol = 1e-9) - return sol.u[end] -end - -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end - -g = function (p) - probN = NonlinearProblem{false}(f, csu0, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Yuan), - abstol = 1e-9) - return sol.u[end] -end - -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end - -g = function (p) - probN = NonlinearProblem{false}(f, csu0, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Fan), - abstol = 1e-9) - return sol.u[end] -end - -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end - -g = function (p) - probN = NonlinearProblem{false}(f, csu0, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Bastin), - abstol = 1e-9) - return sol.u[end] -end - -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end - -# Scalar -f, u0 = (u, p) -> u * u - p, 1.0 - -g = function (p) - probN = NonlinearProblem{false}(f, oftype(p, u0), p) - sol = solve(probN, TrustRegion(), abstol = 1e-10) - return sol.u -end - -@test ForwardDiff.derivative(g, 3.0) ≈ 1 / (2 * sqrt(3.0)) - -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end - -g = function (p) - probN = NonlinearProblem{false}(f, oftype(p, u0), p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Hei), - abstol = 1e-10) - return sol.u -end - -@test ForwardDiff.derivative(g, 3.0) ≈ 1 / (2 * sqrt(3.0)) - -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end - -g = function (p) - probN = NonlinearProblem{false}(f, oftype(p, u0), p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Yuan), - abstol = 1e-10) - return sol.u -end - -@test ForwardDiff.derivative(g, 3.0) ≈ 1 / (2 * sqrt(3.0)) - -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end - -g = function (p) - probN = NonlinearProblem{false}(f, oftype(p, u0), p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Fan), - abstol = 1e-10) - return sol.u -end - -@test ForwardDiff.derivative(g, 3.0) ≈ 1 / (2 * sqrt(3.0)) - -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end - -g = function (p) - probN = NonlinearProblem{false}(f, oftype(p, u0), p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Bastin), - abstol = 1e-10) - return sol.u -end +@testset "TrustRegion" begin + function benchmark_nlsolve_oop(f, u0, p = 2.0; radius_update_scheme, kwargs...) + prob = NonlinearProblem{false}(f, u0, p) + return solve(prob, TrustRegion(; radius_update_scheme); abstol = 1e-9, kwargs...) + end -@test ForwardDiff.derivative(g, 3.0) ≈ 1 / (2 * sqrt(3.0)) + function benchmark_nlsolve_iip(f, u0, p = 2.0; radius_update_scheme, kwargs...) + prob = NonlinearProblem{true}(f, u0, p) + return solve(prob, TrustRegion(; radius_update_scheme); abstol = 1e-9, kwargs...) + end -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end + radius_update_schemes = [RadiusUpdateSchemes.Simple, RadiusUpdateSchemes.Hei, + RadiusUpdateSchemes.Yuan, RadiusUpdateSchemes.Fan, RadiusUpdateSchemes.Bastin] + u0s = VERSION ≥ v"1.9" ? ([1.0, 1.0], @SVector[1.0, 1.0], 1.0) : ([1.0, 1.0], 1.0) -f = (u, p) -> p[1] * u * u - p[2] -t = (p) -> [sqrt(p[2] / p[1])] -p = [0.9, 50.0] -gnewton = function (p) - probN = NonlinearProblem{false}(f, 0.5, p) - sol = solve(probN, TrustRegion()) - return [sol.u] -end -@test gnewton(p) ≈ [sqrt(p[2] / p[1])] -@test ForwardDiff.jacobian(gnewton, p) ≈ ForwardDiff.jacobian(t, p) + @testset "[OOP] u0: $(typeof(u0)) radius_update_scheme: $(radius_update_scheme)" for u0 in u0s, + radius_update_scheme in radius_update_schemes -gnewton = function (p) - probN = NonlinearProblem{false}(f, 0.5, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Hei)) - return [sol.u] -end -@test gnewton(p) ≈ [sqrt(p[2] / p[1])] -@test ForwardDiff.jacobian(gnewton, p) ≈ ForwardDiff.jacobian(t, p) + sol = benchmark_nlsolve_oop(quadratic_f, u0; radius_update_scheme) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -gnewton = function (p) - probN = NonlinearProblem{false}(f, 0.5, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Yuan)) - return [sol.u] -end -@test gnewton(p) ≈ [sqrt(p[2] / p[1])] -@test ForwardDiff.jacobian(gnewton, p) ≈ ForwardDiff.jacobian(t, p) + cache = init(NonlinearProblem{false}(quadratic_f, u0, 2.0), + TrustRegion(; radius_update_scheme); abstol = 1e-9) + @test (@ballocated solve!($cache)) < 200 + end -gnewton = function (p) - probN = NonlinearProblem{false}(f, 0.5, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Fan)) - return [sol.u] -end -@test gnewton(p) ≈ [sqrt(p[2] / p[1])] -@test ForwardDiff.jacobian(gnewton, p) ≈ ForwardDiff.jacobian(t, p) + @testset "[IIP] u0: $(typeof(u0)) radius_update_scheme: $(radius_update_scheme)" for u0 in ([ + 1.0, 1.0],), radius_update_scheme in radius_update_schemes + sol = benchmark_nlsolve_iip(quadratic_f!, u0; radius_update_scheme) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -gnewton = function (p) - probN = NonlinearProblem{false}(f, 0.5, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Bastin)) - return [sol.u] -end -@test gnewton(p) ≈ [sqrt(p[2] / p[1])] -@test ForwardDiff.jacobian(gnewton, p) ≈ ForwardDiff.jacobian(t, p) - -# Iterator interface -f = (u, p) -> u * u - p -g = function (p_range) - probN = NonlinearProblem{false}(f, 0.5, p_range[begin]) - cache = init(probN, TrustRegion(); maxiters = 100, abstol = 1e-10) - sols = zeros(length(p_range)) - for (i, p) in enumerate(p_range) - reinit!(cache, cache.u; p = p) - sol = solve!(cache) - sols[i] = sol.u - end - return sols -end -p = range(0.01, 2, length = 200) -@test g(p) ≈ sqrt.(p) - -f = (res, u, p) -> (res[begin] = u[1] * u[1] - p) -g = function (p_range) - probN = NonlinearProblem{true}(f, [0.5], p_range[begin]) - cache = init(probN, TrustRegion(); maxiters = 100, abstol = 1e-10) - sols = zeros(length(p_range)) - for (i, p) in enumerate(p_range) - reinit!(cache, [cache.u[1]]; p = p) - sol = solve!(cache) - sols[i] = sol.u[1] + cache = init(NonlinearProblem{true}(quadratic_f!, u0, 2.0), + TrustRegion(; radius_update_scheme); abstol = 1e-9) + @test (@ballocated solve!($cache)) ≤ 64 end - return sols -end -p = range(0.01, 2, length = 200) -@test g(p) ≈ sqrt.(p) - -# Error Checks -f, u0 = (u, p) -> u .* u .- 2, @SVector[1.0, 1.0] -probN = NonlinearProblem(f, u0) - -@test solve(probN, TrustRegion()).u[end] ≈ sqrt(2.0) -@test solve(probN, TrustRegion(; autodiff = false)).u[end] ≈ sqrt(2.0) - -@test solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Hei)).u[end] ≈ - sqrt(2.0) -@test solve(probN, TrustRegion(; radius_update_scheme = RadiusUpdateSchemes.Hei, autodiff = false)).u[end] ≈ - sqrt(2.0) - -@test solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Yuan)).u[end] ≈ - sqrt(2.0) -@test solve(probN, TrustRegion(; radius_update_scheme = RadiusUpdateSchemes.Yuan, autodiff = false)).u[end] ≈ - sqrt(2.0) - -@test solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Fan)).u[end] ≈ - sqrt(2.0) -@test solve(probN, TrustRegion(; radius_update_scheme = RadiusUpdateSchemes.Fan, autodiff = false)).u[end] ≈ - sqrt(2.0) - -@test solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Bastin)).u[end] ≈ - sqrt(2.0) -@test solve(probN, TrustRegion(; radius_update_scheme = RadiusUpdateSchemes.Bastin, autodiff = false)).u[end] ≈ - sqrt(2.0) - -for u0 in [1.0, [1, 1.0]] - local f, probN, sol - f = (u, p) -> u .* u .- 2.0 - probN = NonlinearProblem(f, u0) - sol = sqrt(2) * u0 - - @test solve(probN, TrustRegion()).u ≈ sol - @test solve(probN, TrustRegion()).u ≈ sol - @test solve(probN, TrustRegion(; autodiff = false)).u ≈ sol -end - -# Test that `TrustRegion` passes a test that `NewtonRaphson` fails on. -u0 = [-10.0, -1.0, 1.0, 2.0, 3.0, 4.0, 10.0] -global g, f -f = (u, p) -> 0.010000000000000002 .+ - 10.000000000000002 ./ (1 .+ - (0.21640425613334457 .+ - 216.40425613334457 ./ (1 .+ - (0.21640425613334457 .+ - 216.40425613334457 ./ - (1 .+ 0.0006250000000000001(u .^ 2.0))) .^ 2.0)) .^ 2.0) .- - 0.0011552453009332421u .- p -g = function (p) - probN = NonlinearProblem{false}(f, u0, p) - sol = solve(probN, TrustRegion(), abstol = 1e-10) - return sol.u -end -p = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] -u = g(p) -f(u, p) -@test all(abs.(f(u, p)) .< 1e-10) - -g = function (p) - probN = NonlinearProblem{false}(f, u0, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Fan), - abstol = 1e-10) - return sol.u -end -p = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] -u = g(p) -f(u, p) -@test all(abs.(f(u, p)) .< 1e-10) - -g = function (p) - probN = NonlinearProblem{false}(f, u0, p) - sol = solve(probN, TrustRegion(radius_update_scheme = RadiusUpdateSchemes.Bastin), - abstol = 1e-10) - return sol.u -end -p = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] -u = g(p) -f(u, p) -@test all(abs.(f(u, p)) .< 1e-10) - -# Test kwars in `TrustRegion` -max_trust_radius = [10.0, 100.0, 1000.0] -initial_trust_radius = [10.0, 1.0, 0.1] -step_threshold = [0.0, 0.01, 0.25] -shrink_threshold = [0.25, 0.3, 0.5] -expand_threshold = [0.5, 0.8, 0.9] -shrink_factor = [0.1, 0.3, 0.5] -expand_factor = [1.5, 2.0, 3.0] -max_shrink_times = [10, 20, 30] - -list_of_options = zip(max_trust_radius, initial_trust_radius, step_threshold, - shrink_threshold, expand_threshold, shrink_factor, - expand_factor, max_shrink_times) -for options in list_of_options - local probN, sol, alg - alg = TrustRegion(max_trust_radius = options[1], - initial_trust_radius = options[2], - step_threshold = options[3], - shrink_threshold = options[4], - expand_threshold = options[5], - shrink_factor = options[6], - expand_factor = options[7], - max_shrink_times = options[8]) - - probN = NonlinearProblem{false}(f, u0, p) - sol = solve(probN, alg, abstol = 1e-10) - @test all(abs.(f(u, p)) .< 1e-10) -end -# Testing consistency of iip vs oop iterations + if VERSION ≥ v"1.9" + @testset "[OOP] [Immutable AD] radius_update_scheme: $(radius_update_scheme)" for radius_update_scheme in radius_update_schemes + for p in 1.0:0.1:100.0 + @test begin + res = benchmark_nlsolve_oop(quadratic_f, @SVector[1.0, 1.0], p; + radius_update_scheme) + res_true = sqrt(p) + all(res.u .≈ res_true) + end + @test ForwardDiff.derivative(p -> benchmark_nlsolve_oop(quadratic_f, + @SVector[1.0, 1.0], p; radius_update_scheme).u[end], p) ≈ 1 / (2 * sqrt(p)) + end + end + end -maxiterations = [2, 3, 4, 5] -u0 = [1.0, 1.0] -function iip_oop(f, fip, u0, radius_update_scheme, maxiters) - prob_iip = NonlinearProblem{true}(fip, u0) - solver = init(prob_iip, TrustRegion(radius_update_scheme = radius_update_scheme), - abstol = 1e-9, maxiters = maxiters) - sol_iip = solve!(solver) + @testset "[OOP] [Scalar AD] radius_update_scheme: $(radius_update_scheme)" for radius_update_scheme in radius_update_schemes + for p in 1.0:0.1:100.0 + @test begin + res = benchmark_nlsolve_oop(quadratic_f, oftype(p, 1.0), p; + radius_update_scheme) + res_true = sqrt(p) + res.u ≈ res_true + end + @test ForwardDiff.derivative(p -> benchmark_nlsolve_oop(quadratic_f, + oftype(p, 1.0), + p; radius_update_scheme).u, p) ≈ 1 / (2 * sqrt(p)) + end + end - prob_oop = NonlinearProblem{false}(f, u0) - solver = init(prob_oop, TrustRegion(radius_update_scheme = radius_update_scheme), - abstol = 1e-9, maxiters = maxiters) - sol_oop = solve!(solver) + if VERSION ≥ v"1.9" + t = (p) -> [sqrt(p[2] / p[1])] + p = [0.9, 50.0] + @testset "[OOP] [Jacobian] radius_update_scheme: $(radius_update_scheme)" for radius_update_scheme in radius_update_schemes + @test benchmark_nlsolve_oop(quadratic_f2, 0.5, p; radius_update_scheme).u ≈ + sqrt(p[2] / p[1]) + @test ForwardDiff.jacobian(p -> [ + benchmark_nlsolve_oop(quadratic_f2, 0.5, p; + radius_update_scheme).u, + ], p) ≈ ForwardDiff.jacobian(t, p) + end + end - return sol_iip.u[end], sol_oop.u[end] -end + # Iterator interface + function nlprob_iterator_interface(f, p_range, ::Val{iip}) where {iip} + probN = NonlinearProblem{iip}(f, iip ? [0.5] : 0.5, p_range[begin]) + cache = init(probN, TrustRegion(); maxiters = 100, abstol = 1e-10) + sols = zeros(length(p_range)) + for (i, p) in enumerate(p_range) + reinit!(cache, iip ? [cache.u[1]] : cache.u; p = p) + sol = solve!(cache) + sols[i] = iip ? sol.u[1] : sol.u + end + return sols + end + p = range(0.01, 2, length = 200) + @test nlprob_iterator_interface(quadratic_f, p, Val(false)) ≈ sqrt.(p) + @test nlprob_iterator_interface(quadratic_f!, p, Val(true)) ≈ sqrt.(p) -for maxiters in maxiterations - iip, oop = iip_oop(ff, ffiip, u0, RadiusUpdateSchemes.Simple, maxiters) - @test iip == oop -end + @testset "ADType: $(autodiff) u0: $(_nameof(u0)) radius_update_scheme: $(radius_update_scheme)" for autodiff in (false, + true, AutoSparseForwardDiff(), AutoSparseFiniteDiff(), AutoZygote(), + AutoSparseZygote(), AutoSparseEnzyme()), u0 in (1.0, [1.0, 1.0]), + radius_update_scheme in radius_update_schemes -for maxiters in maxiterations - iip, oop = iip_oop(ff, ffiip, u0, RadiusUpdateSchemes.Hei, maxiters) - @test iip == oop -end + probN = NonlinearProblem(quadratic_f, u0, 2.0) + @test all(solve(probN, NewtonRaphson(; autodiff)).u .≈ sqrt(2.0)) + end -for maxiters in maxiterations - iip, oop = iip_oop(ff, ffiip, u0, RadiusUpdateSchemes.Yuan, maxiters) - @test iip == oop -end + # Test that `TrustRegion` passes a test that `NewtonRaphson` fails on. + @testset "Newton Raphson Fails: radius_update_scheme: $(radius_update_scheme)" for radius_update_scheme in [ + RadiusUpdateSchemes.Simple, RadiusUpdateSchemes.Fan, RadiusUpdateSchemes.Bastin] + u0 = [-10.0, -1.0, 1.0, 2.0, 3.0, 4.0, 10.0] + p = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + sol = benchmark_nlsolve_oop(newton_fails, u0, p; radius_update_scheme) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(newton_fails(sol.u, p)) .< 1e-9) + end -for maxiters in maxiterations - iip, oop = iip_oop(ff, ffiip, u0, RadiusUpdateSchemes.Fan, maxiters) - @test iip == oop -end + # Test kwargs in `TrustRegion` + @testset "Keyword Arguments" begin + max_trust_radius = [10.0, 100.0, 1000.0] + initial_trust_radius = [10.0, 1.0, 0.1] + step_threshold = [0.0, 0.01, 0.25] + shrink_threshold = [0.25, 0.3, 0.5] + expand_threshold = [0.5, 0.8, 0.9] + shrink_factor = [0.1, 0.3, 0.5] + expand_factor = [1.5, 2.0, 3.0] + max_shrink_times = [10, 20, 30] + + list_of_options = zip(max_trust_radius, initial_trust_radius, step_threshold, + shrink_threshold, expand_threshold, shrink_factor, + expand_factor, max_shrink_times) + for options in list_of_options + local probN, sol, alg + alg = TrustRegion(max_trust_radius = options[1], + initial_trust_radius = options[2], step_threshold = options[3], + shrink_threshold = options[4], expand_threshold = options[5], + shrink_factor = options[6], expand_factor = options[7], + max_shrink_times = options[8]) + + probN = NonlinearProblem{false}(quadratic_f, [1.0, 1.0], 2.0) + sol = solve(probN, alg, abstol = 1e-10) + @test all(abs.(quadratic_f(sol.u, 2.0)) .< 1e-10) + end + end -for maxiters in maxiterations - iip, oop = iip_oop(ff, ffiip, u0, RadiusUpdateSchemes.Bastin, maxiters) - @test iip == oop + # Testing consistency of iip vs oop iterations + @testset "OOP / IIP Consistency" begin + maxiterations = [2, 3, 4, 5] + u0 = [1.0, 1.0] + @testset "radius_update_scheme: $(radius_update_scheme) maxiters: $(maxiters)" for radius_update_scheme in radius_update_schemes, + maxiters in maxiterations + + sol_iip = benchmark_nlsolve_iip(quadratic_f!, u0; radius_update_scheme, + maxiters) + sol_oop = benchmark_nlsolve_oop(quadratic_f, u0; radius_update_scheme, + maxiters) + @test sol_iip.u ≈ sol_iip.u + end + end end # --- LevenbergMarquardt tests --- -function benchmark_immutable(f, u0) - probN = NonlinearProblem{false}(f, u0) - solver = init(probN, LevenbergMarquardt(), abstol = 1e-9) - sol = solve!(solver) -end - -function benchmark_mutable(f, u0) - probN = NonlinearProblem{false}(f, u0) - solver = init(probN, LevenbergMarquardt(), abstol = 1e-9) - sol = solve!(solver) -end - -function benchmark_scalar(f, u0) - probN = NonlinearProblem{false}(f, u0) - sol = (solve(probN, LevenbergMarquardt(), abstol = 1e-9)) -end - -function ff(u, p) - u .* u .- 2 -end - -function sf(u, p) - u * u - 2 -end -u0 = [1.0, 1.0] - -sol = benchmark_immutable(ff, cu0) -@test sol.retcode === ReturnCode.Success -@test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -sol = benchmark_mutable(ff, u0) -@test sol.retcode === ReturnCode.Success -@test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -sol = benchmark_scalar(sf, csu0) -@test sol.retcode === ReturnCode.Success -@test abs(sol.u * sol.u - 2) < 1e-9 - -function benchmark_inplace(f, u0) - probN = NonlinearProblem{true}(f, u0) - solver = init(probN, LevenbergMarquardt(), abstol = 1e-9) - sol = solve!(solver) -end - -function ffiip(du, u, p) - du .= u .* u .- 2 -end -u0 = [1.0, 1.0] - -sol = benchmark_inplace(ffiip, u0) -@test sol.retcode === ReturnCode.Success -@test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) - -u0 = [1.0, 1.0] -probN = NonlinearProblem{true}(ffiip, u0) -solver = init(probN, LevenbergMarquardt(), abstol = 1e-9) -@test (@ballocated solve!(solver)) < 120 - -# AD Tests -using ForwardDiff - -# Immutable -f, u0 = (u, p) -> u .* u .- p, @SVector[1.0, 1.0] - -g = function (p) - probN = NonlinearProblem{false}(f, csu0, p) - sol = solve(probN, LevenbergMarquardt(), abstol = 1e-9) - return sol.u[end] -end +@testset "LevenbergMarquardt" begin + function benchmark_nlsolve_oop(f, u0, p = 2.0) + prob = NonlinearProblem{false}(f, u0, p) + return solve(prob, LevenbergMarquardt(), abstol = 1e-9) + end -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end + function benchmark_nlsolve_iip(f, u0, p = 2.0) + prob = NonlinearProblem{true}(f, u0, p) + return solve(prob, LevenbergMarquardt(), abstol = 1e-9) + end -# Scalar -f, u0 = (u, p) -> u * u - p, 1.0 + u0s = VERSION ≥ v"1.9" ? ([1.0, 1.0], @SVector[1.0, 1.0], 1.0) : ([1.0, 1.0], 1.0) + @testset "[OOP] u0: $(typeof(u0))" for u0 in u0s + sol = benchmark_nlsolve_oop(quadratic_f, u0) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -g = function (p) - probN = NonlinearProblem{false}(f, oftype(p, u0), p) - sol = solve(probN, LevenbergMarquardt(), abstol = 1e-10) - return sol.u -end + cache = init(NonlinearProblem{false}(quadratic_f, u0, 2.0), LevenbergMarquardt(), + abstol = 1e-9) + @test (@ballocated solve!($cache)) < 200 + end -@test ForwardDiff.derivative(g, 3.0) ≈ 1 / (2 * sqrt(3.0)) + @testset "[IIP] u0: $(typeof(u0))" for u0 in ([1.0, 1.0],) + sol = benchmark_nlsolve_iip(quadratic_f!, u0) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) -for p in 1.1:0.1:100.0 - @test g(p) ≈ sqrt(p) - @test ForwardDiff.derivative(g, p) ≈ 1 / (2 * sqrt(p)) -end + cache = init(NonlinearProblem{true}(quadratic_f!, u0, 2.0), LevenbergMarquardt(), + abstol = 1e-9) + @test (@ballocated solve!($cache)) ≤ 64 + end -f = (u, p) -> p[1] * u * u - p[2] -t = (p) -> [sqrt(p[2] / p[1])] -p = [0.9, 50.0] -gnewton = function (p) - probN = NonlinearProblem{false}(f, 0.5, p) - sol = solve(probN, LevenbergMarquardt()) - return [sol.u] -end -@test gnewton(p) ≈ [sqrt(p[2] / p[1])] -@test ForwardDiff.jacobian(gnewton, p) ≈ ForwardDiff.jacobian(t, p) + if VERSION ≥ v"1.9" + @testset "[OOP] [Immutable AD]" begin + for p in 1.0:0.1:100.0 + @test begin + res = benchmark_nlsolve_oop(quadratic_f, @SVector[1.0, 1.0], p) + res_true = sqrt(p) + all(res.u .≈ res_true) + end + @test ForwardDiff.derivative(p -> benchmark_nlsolve_oop(quadratic_f, + @SVector[1.0, 1.0], p).u[end], p) ≈ 1 / (2 * sqrt(p)) + end + end + end -# Error Checks -f, u0 = (u, p) -> u .* u .- 2.0, @SVector[1.0, 1.0] -probN = NonlinearProblem(f, u0) + @testset "[OOP] [Scalar AD]" begin + for p in 1.0:0.1:100.0 + @test begin + res = benchmark_nlsolve_oop(quadratic_f, 1.0, p) + res_true = sqrt(p) + res.u ≈ res_true + end + @test ForwardDiff.derivative(p -> benchmark_nlsolve_oop(quadratic_f, 1.0, p).u, + p) ≈ + 1 / (2 * sqrt(p)) + end + end -@test solve(probN, LevenbergMarquardt()).u[end] ≈ sqrt(2.0) -@test solve(probN, LevenbergMarquardt(; autodiff = false)).u[end] ≈ sqrt(2.0) + if VERSION ≥ v"1.9" + t = (p) -> [sqrt(p[2] / p[1])] + p = [0.9, 50.0] + @test benchmark_nlsolve_oop(quadratic_f2, 0.5, p).u ≈ sqrt(p[2] / p[1]) + @test ForwardDiff.jacobian(p -> [benchmark_nlsolve_oop(quadratic_f2, 0.5, p).u], + p) ≈ + ForwardDiff.jacobian(t, p) + end -for u0 in [1.0, [1, 1.0]] - local f, probN, sol - f = (u, p) -> u .* u .- 2.0 - probN = NonlinearProblem(f, u0) - sol = sqrt(2) * u0 + @testset "ADType: $(autodiff) u0: $(_nameof(u0))" for autodiff in (false, true, + AutoSparseForwardDiff(), AutoSparseFiniteDiff(), AutoZygote(), + AutoSparseZygote(), AutoSparseEnzyme()), u0 in (1.0, [1.0, 1.0]) + probN = NonlinearProblem(quadratic_f, u0, 2.0) + @test all(solve(probN, LevenbergMarquardt(; autodiff)).u .≈ sqrt(2.0)) + end - @test solve(probN, LevenbergMarquardt()).u ≈ sol - @test solve(probN, LevenbergMarquardt()).u ≈ sol - @test solve(probN, LevenbergMarquardt(; autodiff = false)).u ≈ sol -end + # Test that `LevenbergMarquardt` passes a test that `NewtonRaphson` fails on. + @testset "Newton Raphson Fails" begin + u0 = [-10.0, -1.0, 1.0, 2.0, 3.0, 4.0, 10.0] + p = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + sol = benchmark_nlsolve_oop(newton_fails, u0, p) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(newton_fails(sol.u, p)) .< 1e-9) + end -# Test that `LevenbergMarquardt` passes a test that `NewtonRaphson` fails on. -u0 = [-10.0, -1.0, 1.0, 2.0, 3.0, 4.0, 10.0] -global g, f -f = (u, p) -> 0.010000000000000002 .+ - 10.000000000000002 ./ (1 .+ - (0.21640425613334457 .+ - 216.40425613334457 ./ (1 .+ - (0.21640425613334457 .+ - 216.40425613334457 ./ - (1 .+ 0.0006250000000000001(u .^ 2.0))) .^ 2.0)) .^ 2.0) .- - 0.0011552453009332421u .- p -g = function (p) - probN = NonlinearProblem{false}(f, u0, p) - sol = solve(probN, LevenbergMarquardt(), abstol = 1e-10) - return sol.u -end -p = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] -u = g(p) -f(u, p) -@test all(abs.(f(u, p)) .< 1e-10) - -# # Test kwars in `LevenbergMarquardt` -damping_initial = [0.5, 2.0, 5.0] -damping_increase_factor = [1.5, 3.0, 10.0] -damping_decrease_factor = [2, 5, 10] -finite_diff_step_geodesic = [0.02, 0.2, 0.3] -α_geodesic = [0.6, 0.8, 0.9] -b_uphill = [0, 1, 2] -min_damping_D = [1e-12, 1e-9, 1e-4] - -list_of_options = zip(damping_initial, damping_increase_factor, damping_decrease_factor, - finite_diff_step_geodesic, α_geodesic, b_uphill, - min_damping_D) -for options in list_of_options - local probN, sol, alg - alg = LevenbergMarquardt(damping_initial = options[1], - damping_increase_factor = options[2], - damping_decrease_factor = options[3], - finite_diff_step_geodesic = options[4], - α_geodesic = options[5], - b_uphill = options[6], - min_damping_D = options[7]) - - probN = NonlinearProblem{false}(f, u0, p) - sol = solve(probN, alg, abstol = 1e-10) - @test all(abs.(f(u, p)) .< 1e-10) + # Test kwargs in `LevenbergMarquardt` + @testset "Keyword Arguments" begin + damping_initial = [0.5, 2.0, 5.0] + damping_increase_factor = [1.5, 3.0, 10.0] + damping_decrease_factor = Float64[2, 5, 10] + finite_diff_step_geodesic = [0.02, 0.2, 0.3] + α_geodesic = [0.6, 0.8, 0.9] + b_uphill = Float64[0, 1, 2] + min_damping_D = [1e-12, 1e-9, 1e-4] + + list_of_options = zip(damping_initial, damping_increase_factor, + damping_decrease_factor, finite_diff_step_geodesic, α_geodesic, b_uphill, + min_damping_D) + for options in list_of_options + local probN, sol, alg + alg = LevenbergMarquardt(damping_initial = options[1], + damping_increase_factor = options[2], + damping_decrease_factor = options[3], + finite_diff_step_geodesic = options[4], α_geodesic = options[5], + b_uphill = options[6], min_damping_D = options[7]) + + probN = NonlinearProblem{false}(quadratic_f, [1.0, 1.0], 2.0) + sol = solve(probN, alg, abstol = 1e-10) + @test all(abs.(quadratic_f(sol.u, 2.0)) .< 1e-10) + end + end end diff --git a/test/convergencetests.jl b/test/convergencetests.jl deleted file mode 100644 index 751948522..000000000 --- a/test/convergencetests.jl +++ /dev/null @@ -1,40 +0,0 @@ -using NonlinearSolve -using StaticArrays -using BenchmarkTools -using Test - -using SciMLNLSolve - -###-----Trust Region tests-----### - -# some simple functions # -function f_oop(u, p) - u .* u .- p -end - -function f_iip(du, u, p) - du .= u .* u .- p -end - -function f_scalar(u, p) - u * u - p -end - -u0 = [1.0, 1.0] -csu0 = 1.0 -p = [2.0, 2.0] -radius_update_scheme = RadiusUpdateSchemes.Simple -tol = 1e-9 - -function convergence_test_oop(f, u0, p, radius_update_scheme) - prob = NonlinearProblem{false}(f, oftype(p, u0), p) - cache = init(prob, - TrustRegion(radius_update_scheme = radius_update_scheme), - abstol = 1e-9) - sol = solve!(cache) - return cache.internalnorm(cache.u_prev - cache.u), cache.iter, sol.retcode -end - -residual, iterations, return_code = convergence_test_oop(f_oop, u0, p, radius_update_scheme) -@test return_code === ReturnCode.Success -@test residual ≈ tol diff --git a/test/nonlinearls.jl b/test/nonlinearls.jl new file mode 100644 index 000000000..d6f80367a --- /dev/null +++ b/test/nonlinearls.jl @@ -0,0 +1,43 @@ +using NonlinearSolve, LinearSolve, LinearAlgebra, Test, Random + +true_function(x, θ) = @. θ[1] * exp(θ[2] * x) * cos(θ[3] * x + θ[4]) +true_function(y, x, θ) = (@. y = θ[1] * exp(θ[2] * x) * cos(θ[3] * x + θ[4])) + +θ_true = [1.0, 0.1, 2.0, 0.5] + +x = [-1.0, -0.5, 0.0, 0.5, 1.0] + +y_target = true_function(x, θ_true) + +function loss_function(θ, p) + ŷ = true_function(p, θ) + return abs2.(ŷ .- y_target) +end + +function loss_function(resid, θ, p) + true_function(resid, p, θ) + resid .= abs2.(resid .- y_target) + return resid +end + +θ_init = θ_true .+ randn!(similar(θ_true)) * 0.1 +prob_oop = NonlinearProblem{false}(loss_function, θ_init, x) +prob_iip = NonlinearProblem(NonlinearFunction(loss_function; + resid_prototype = zero(y_target)), θ_init, x) + +sol = solve(prob_oop, GaussNewton(); maxiters = 1000, abstol = 1e-8) +@test SciMLBase.successful_retcode(sol) +@test norm(sol.resid) < 1e-6 + +sol = solve(prob_iip, GaussNewton(); maxiters = 1000, abstol = 1e-8) +@test SciMLBase.successful_retcode(sol) +@test norm(sol.resid) < 1e-6 + +sol = solve(prob_oop, LevenbergMarquardt(); maxiters = 1000, abstol = 1e-8) +@test SciMLBase.successful_retcode(sol) +@test norm(sol.resid) < 1e-6 + +sol = solve(prob_iip, LevenbergMarquardt(; linsolve = NormalCholeskyFactorization()); + maxiters = 1000, abstol = 1e-8) +@test SciMLBase.successful_retcode(sol) +@test norm(sol.resid) < 1e-6 diff --git a/test/runtests.jl b/test/runtests.jl index a84fc3cb1..a3061dcc4 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -15,6 +15,7 @@ end if GROUP == "All" || GROUP == "Core" @time @safetestset "Basic Tests + Some AD" include("basictests.jl") @time @safetestset "Sparsity Tests" include("sparse.jl") + @time @safetestset "Nonlinear Least Squares" include("nonlinearls.jl") end if GROUP == "GPU" diff --git a/test/sparse.jl b/test/sparse.jl index 1f4d07161..256ca7530 100644 --- a/test/sparse.jl +++ b/test/sparse.jl @@ -2,8 +2,10 @@ using NonlinearSolve, LinearAlgebra, SparseArrays, Symbolics const N = 32 const xyd_brusselator = range(0, stop = 1, length = N) + brusselator_f(x, y) = (((x - 0.3)^2 + (y - 0.6)^2) <= 0.1^2) * 5.0 limit(a, N) = a == N + 1 ? 1 : a == 0 ? N : a + function brusselator_2d_loop(du, u, p) A, B, alpha, dx = p alpha = alpha / dx^2 @@ -21,6 +23,7 @@ function brusselator_2d_loop(du, u, p) A * u[i, j, 1] - u[i, j, 1]^2 * u[i, j, 2] end end + p = (3.4, 1.0, 10.0, step(xyd_brusselator)) function init_brusselator_2d(xyd) @@ -32,8 +35,9 @@ function init_brusselator_2d(xyd) u[I, 1] = 22 * (y * (1 - y))^(3 / 2) u[I, 2] = 27 * (x * (1 - x))^(3 / 2) end - u + return u end + u0 = init_brusselator_2d(xyd_brusselator) prob_brusselator_2d = NonlinearProblem(brusselator_2d_loop, u0, p) sol = solve(prob_brusselator_2d, NewtonRaphson()) @@ -47,12 +51,14 @@ fill!(jac_prototype, 0) ff = NonlinearFunction(brusselator_2d_loop; jac_prototype) prob_brusselator_2d = NonlinearProblem(ff, u0, p) + +# for autodiff in [false, ] sol = solve(prob_brusselator_2d, NewtonRaphson()) @test norm(sol.resid) < 1e-8 @test !all(iszero, jac_prototype) -sol = solve(prob_brusselator_2d, NewtonRaphson(autodiff = false)) +sol = solve(prob_brusselator_2d, NewtonRaphson(autodiff = AutoSparseFiniteDiff())) @test norm(sol.resid) < 1e-6 -cache = init(prob_brusselator_2d, NewtonRaphson()) -@test maximum(cache.jac_config.colorvec) == 12 +cache = init(prob_brusselator_2d, NewtonRaphson(; autodiff = AutoSparseForwardDiff())); +@test maximum(cache.jac_cache.coloring.colorvec) == 12