From 1e1d56941ecfd9293311c3d8cda83bf72688afb4 Mon Sep 17 00:00:00 2001 From: oscarddssmith Date: Wed, 7 Aug 2024 17:40:08 -0400 Subject: [PATCH] simplify dolinsolve --- lib/OrdinaryDiffEqBDF/src/algorithms.jl | 91 +++---- .../src/OrdinaryDiffEqCore.jl | 2 +- .../src/OrdinaryDiffEqDifferentiation.jl | 2 +- .../src/linsolve_utils.jl | 47 ++-- .../src/algorithms.jl | 41 ++- .../src/extrapolation_caches.jl | 32 +-- lib/OrdinaryDiffEqFIRK/src/algorithms.jl | 24 +- lib/OrdinaryDiffEqFIRK/src/firk_caches.jl | 24 +- .../src/algorithms.jl | 17 +- lib/OrdinaryDiffEqNonlinearSolve/src/utils.jl | 12 +- lib/OrdinaryDiffEqPDIRK/src/algorithms.jl | 9 +- .../src/algorithms.jl | 30 +-- .../src/generic_rosenbrock.jl | 30 +-- .../src/rosenbrock_caches.jl | 97 ++----- .../src/rosenbrock_perform_step.jl | 77 +----- lib/OrdinaryDiffEqSDIRK/src/algorithms.jl | 251 ++++++++---------- .../src/algorithms.jl | 9 +- test/interface/default_solver_tests.jl | 4 +- test/interface/linear_nonlinear_tests.jl | 69 ++--- test/interface/linear_solver_test.jl | 4 +- test/interface/preconditioners.jl | 79 +++--- 21 files changed, 348 insertions(+), 603 deletions(-) diff --git a/lib/OrdinaryDiffEqBDF/src/algorithms.jl b/lib/OrdinaryDiffEqBDF/src/algorithms.jl index 1a4c960c7b..73327af5d4 100644 --- a/lib/OrdinaryDiffEqBDF/src/algorithms.jl +++ b/lib/OrdinaryDiffEqBDF/src/algorithms.jl @@ -6,11 +6,10 @@ an Adaptive BDF2 Formula and Comparison with The MATLAB Ode15s. Procedia Compute ABDF2: Multistep Method An adaptive order 2 L-stable fixed leading coefficient multistep BDF method. """ -struct ABDF2{CS, AD, F, F2, P, FDT, ST, CJ, K, T, StepLimiter} <: +struct ABDF2{CS, AD, F, F2, FDT, ST, CJ, K, T, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P κ::K tol::T smooth_est::Bool @@ -20,14 +19,14 @@ struct ABDF2{CS, AD, F, F2, P, FDT, ST, CJ, K, T, StepLimiter} <: end function ABDF2(; chunk_size = Val{0}(), autodiff = true, standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - κ = nothing, tol = nothing, linsolve = nothing, precs = DEFAULT_PRECS, + κ = nothing, tol = nothing, linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :Standard, step_limiter! = trivial_limiter!) ABDF2{ _unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), typeof(nlsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), - typeof(κ), typeof(tol), typeof(step_limiter!)}(linsolve, nlsolve, precs, κ, tol, + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), + typeof(κ), typeof(tol), typeof(step_limiter!)}(linsolve, nlsolve, κ, tol, smooth_est, extrapolant, controller, step_limiter!) end @@ -36,11 +35,10 @@ Uri M. Ascher, Steven J. Ruuth, Brian T. R. Wetton. Implicit-Explicit Methods fo Dependent Partial Differential Equations. 1995 Society for Industrial and Applied Mathematics Journal on Numerical Analysis, 32(3), pp 797-823, 1995. doi: https://doi.org/10.1137/0732037 """ -struct SBDF{CS, AD, F, F2, P, FDT, ST, CJ, K, T} <: +struct SBDF{CS, AD, F, F2, FDT, ST, CJ, K, T} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P κ::K tol::T extrapolant::Symbol @@ -50,14 +48,13 @@ end function SBDF(order; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), κ = nothing, + linsolve = nothing, nlsolve = NLNewton(), κ = nothing, tol = nothing, extrapolant = :linear, ark = false) SBDF{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), typeof(nlsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(κ), typeof(tol)}(linsolve, nlsolve, - precs, κ, tol, extrapolant, @@ -68,15 +65,14 @@ end # All keyword form needed for remake function SBDF(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), κ = nothing, + linsolve = nothing, nlsolve = NLNewton(), κ = nothing, tol = nothing, extrapolant = :linear, order, ark = false) SBDF{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), typeof(nlsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(κ), typeof(tol)}(linsolve, nlsolve, - precs, κ, tol, extrapolant, @@ -136,11 +132,10 @@ Optional parameter kappa defaults to Shampine's accuracy-optimal -0.1850. See also `QNDF`. """ -struct QNDF1{CS, AD, F, F2, P, FDT, ST, CJ, κType, StepLimiter} <: +struct QNDF1{CS, AD, F, F2, FDT, ST, CJ, κType, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol kappa::κType controller::Symbol @@ -149,15 +144,14 @@ end function QNDF1(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, kappa = -37//200, controller = :Standard, step_limiter! = trivial_limiter!) QNDF1{ _unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), typeof(nlsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(kappa), typeof(step_limiter!)}(linsolve, nlsolve, - precs, extrapolant, kappa, controller, @@ -170,11 +164,10 @@ An adaptive order 2 quasi-constant timestep L-stable numerical differentiation f See also `QNDF`. """ -struct QNDF2{CS, AD, F, F2, P, FDT, ST, CJ, κType, StepLimiter} <: +struct QNDF2{CS, AD, F, F2, FDT, ST, CJ, κType, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol kappa::κType controller::Symbol @@ -183,15 +176,14 @@ end function QNDF2(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, kappa = -1 // 9, controller = :Standard, step_limiter! = trivial_limiter!) QNDF2{ _unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), typeof(nlsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(kappa), typeof(step_limiter!)}(linsolve, nlsolve, - precs, extrapolant, kappa, controller, @@ -214,12 +206,11 @@ year={1997}, publisher={SIAM} } """ -struct QNDF{MO, CS, AD, F, F2, P, FDT, ST, CJ, K, T, κType, StepLimiter} <: +struct QNDF{MO, CS, AD, F, F2, FDT, ST, CJ, K, T, κType, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} max_order::Val{MO} linsolve::F nlsolve::F2 - precs::P κ::K tol::T extrapolant::Symbol @@ -231,15 +222,15 @@ end function QNDF(; max_order::Val{MO} = Val{5}(), chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), κ = nothing, + linsolve = nothing, nlsolve = NLNewton(), κ = nothing, tol = nothing, extrapolant = :linear, kappa = (-37//200, -1//9, -823//10000, -83//2000, 0//1), controller = :Standard, step_limiter! = trivial_limiter!) where {MO} QNDF{MO, _unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(κ), typeof(tol), typeof(kappa), typeof(step_limiter!)}( - max_order, linsolve, nlsolve, precs, κ, tol, + max_order, linsolve, nlsolve, κ, tol, extrapolant, kappa, controller, step_limiter!) end @@ -250,22 +241,20 @@ MEBDF2: Multistep Method The second order Modified Extended BDF method, which has improved stability properties over the standard BDF. Fixed timestep only. """ -struct MEBDF2{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct MEBDF2{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol end function MEBDF2(; chunk_size = Val{0}(), autodiff = true, standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :constant) MEBDF2{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, nlsolve, - precs, extrapolant) end @@ -282,12 +271,11 @@ year={2002}, publisher={Walter de Gruyter GmbH \\& Co. KG} } """ -struct FBDF{MO, CS, AD, F, F2, P, FDT, ST, CJ, K, T, StepLimiter} <: +struct FBDF{MO, CS, AD, F, F2, FDT, ST, CJ, K, T, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} max_order::Val{MO} linsolve::F nlsolve::F2 - precs::P κ::K tol::T extrapolant::Symbol @@ -298,14 +286,14 @@ end function FBDF(; max_order::Val{MO} = Val{5}(), chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), κ = nothing, + linsolve = nothing, nlsolve = NLNewton(), κ = nothing, tol = nothing, extrapolant = :linear, controller = :Standard, step_limiter! = trivial_limiter!) where {MO} FBDF{MO, _unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(κ), typeof(tol), typeof(step_limiter!)}( - max_order, linsolve, nlsolve, precs, κ, tol, extrapolant, + max_order, linsolve, nlsolve, κ, tol, extrapolant, controller, step_limiter!) end @@ -389,41 +377,39 @@ See also `SBDF`, `IMEXEuler`. """ IMEXEulerARK(; kwargs...) = SBDF(1; ark = true, kwargs...) -struct DImplicitEuler{CS, AD, F, F2, P, FDT, ST, CJ} <: DAEAlgorithm{CS, AD, FDT, ST, CJ} +struct DImplicitEuler{CS, AD, F, F2, FDT, ST, CJ} <: DAEAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol end function DImplicitEuler(; chunk_size = Val{0}(), autodiff = true, standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :constant, controller = :Standard) DImplicitEuler{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, - nlsolve, precs, extrapolant, controller) + nlsolve, extrapolant, controller) end -struct DABDF2{CS, AD, F, F2, P, FDT, ST, CJ} <: DAEAlgorithm{CS, AD, FDT, ST, CJ} +struct DABDF2{CS, AD, F, F2, FDT, ST, CJ} <: DAEAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol end function DABDF2(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :constant, controller = :Standard) DABDF2{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, - nlsolve, precs, extrapolant, controller) + nlsolve, extrapolant, controller) end #= @@ -440,11 +426,10 @@ DBDF(;chunk_size=Val{0}(),autodiff=Val{true}(), standardtag = Val{true}(), concr linsolve,nlsolve,precs,extrapolant) =# -struct DFBDF{MO, CS, AD, F, F2, P, FDT, ST, CJ, K, T} <: DAEAlgorithm{CS, AD, FDT, ST, CJ} +struct DFBDF{MO, CS, AD, F, F2, FDT, ST, CJ, K, T} <: DAEAlgorithm{CS, AD, FDT, ST, CJ} max_order::Val{MO} linsolve::F nlsolve::F2 - precs::P κ::K tol::T extrapolant::Symbol @@ -453,13 +438,13 @@ end function DFBDF(; max_order::Val{MO} = Val{5}(), chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), κ = nothing, + linsolve = nothing, nlsolve = NLNewton(), κ = nothing, tol = nothing, extrapolant = :linear, controller = :Standard) where {MO} DFBDF{MO, _unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), - typeof(κ), typeof(tol)}(max_order, linsolve, nlsolve, precs, κ, tol, extrapolant, + typeof(κ), typeof(tol)}(max_order, linsolve, nlsolve, κ, tol, extrapolant, controller) end diff --git a/lib/OrdinaryDiffEqCore/src/OrdinaryDiffEqCore.jl b/lib/OrdinaryDiffEqCore/src/OrdinaryDiffEqCore.jl index 6cbb4ec20a..d948c0816e 100644 --- a/lib/OrdinaryDiffEqCore/src/OrdinaryDiffEqCore.jl +++ b/lib/OrdinaryDiffEqCore/src/OrdinaryDiffEqCore.jl @@ -107,7 +107,7 @@ end end const TryAgain = SlowConvergence -DEFAULT_PRECS(W, du, u, p, t, newW, Plprev, Prprev, solverdata) = nothing, nothing +DEFAULT_PRECS(W, p) = nothing, nothing isdiscretecache(cache) = false include("doc_utils.jl") diff --git a/lib/OrdinaryDiffEqDifferentiation/src/OrdinaryDiffEqDifferentiation.jl b/lib/OrdinaryDiffEqDifferentiation/src/OrdinaryDiffEqDifferentiation.jl index bc1e42339d..bc87f456b6 100644 --- a/lib/OrdinaryDiffEqDifferentiation/src/OrdinaryDiffEqDifferentiation.jl +++ b/lib/OrdinaryDiffEqDifferentiation/src/OrdinaryDiffEqDifferentiation.jl @@ -27,7 +27,7 @@ import StaticArrays: SArray, MVector, SVector, @SVector, StaticArray, MMatrix, S using DiffEqBase: TimeGradientWrapper, UJacobianWrapper, TimeDerivativeWrapper, UDerivativeWrapper -using SciMLBase: AbstractSciMLOperator +using SciMLBase: AbstractSciMLOperator, DEIntegrator import OrdinaryDiffEqCore using OrdinaryDiffEqCore: OrdinaryDiffEqAlgorithm, OrdinaryDiffEqAdaptiveImplicitAlgorithm, DAEAlgorithm, diff --git a/lib/OrdinaryDiffEqDifferentiation/src/linsolve_utils.jl b/lib/OrdinaryDiffEqDifferentiation/src/linsolve_utils.jl index aa48161e1b..443ebca5fa 100644 --- a/lib/OrdinaryDiffEqDifferentiation/src/linsolve_utils.jl +++ b/lib/OrdinaryDiffEqDifferentiation/src/linsolve_utils.jl @@ -3,27 +3,20 @@ issuccess_W(W::Number) = !iszero(W) issuccess_W(::Any) = true function dolinsolve(integrator, linsolve; A = nothing, linu = nothing, b = nothing, - du = nothing, u = nothing, p = nothing, t = nothing, - weight = nothing, solverdata = nothing, reltol = integrator === nothing ? nothing : integrator.opts.reltol) - A !== nothing && (linsolve.A = A) b !== nothing && (linsolve.b = b) linu !== nothing && (linsolve.u = linu) - Plprev = linsolve.Pl isa LinearSolve.ComposePreconditioner ? linsolve.Pl.outer : - linsolve.Pl - Prprev = linsolve.Pr isa LinearSolve.ComposePreconditioner ? linsolve.Pr.outer : - linsolve.Pr - _alg = unwrap_alg(integrator, true) - - _Pl, _Pr = _alg.precs(linsolve.A, du, u, p, t, A !== nothing, Plprev, Prprev, - solverdata) - if (_Pl !== nothing || _Pr !== nothing) - __Pl = _Pl === nothing ? SciMLOperators.IdentityOperator(length(integrator.u)) : _Pl - __Pr = _Pr === nothing ? SciMLOperators.IdentityOperator(length(integrator.u)) : _Pr - linsolve.Pl = __Pl - linsolve.Pr = __Pr + if !isnothing(A) + if integrator isa DEIntegrator + (;u, p, t) = integrator + du = hasproperty(integrator, :du) ? integrator.du : nothing + p = (du, u, p, t) + reinit!(linsolve; A, p) + else + reinit!(linsolve; A) + end end linres = solve!(linsolve; reltol) @@ -44,16 +37,18 @@ function dolinsolve(integrator, linsolve; A = nothing, linu = nothing, b = nothi return linres end -function wrapprecs(_Pl::Nothing, _Pr::Nothing, weight, u) - Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))) - Pr = Diagonal(_vec(weight)) - Pl, Pr -end - -function wrapprecs(_Pl, _Pr, weight, u) - Pl = _Pl === nothing ? SciMLOperators.IdentityOperator(length(u)) : _Pl - Pr = _Pr === nothing ? SciMLOperators.IdentityOperator(length(u)) : _Pr - Pl, Pr +function wrapprecs(linsolver, W, weight) + if isnothing(linsolver) + linsolver = LinearSolve.defaultalg(W, weight, LinearSolve.OperatorAssumptions(true)) + end + if hasproperty(linsolver, :precs) && isnothing(linsolver.precs) + Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))) + Pr = Diagonal(_vec(weight)) + precs = Returns((Pl, Pr)) + return remake(linsolver; precs) + else + return linsolver + end end Base.resize!(p::LinearSolve.LinearCache, i) = p diff --git a/lib/OrdinaryDiffEqExtrapolation/src/algorithms.jl b/lib/OrdinaryDiffEqExtrapolation/src/algorithms.jl index 7b84e36bdc..d0780b7542 100644 --- a/lib/OrdinaryDiffEqExtrapolation/src/algorithms.jl +++ b/lib/OrdinaryDiffEqExtrapolation/src/algorithms.jl @@ -21,10 +21,9 @@ ImplicitEulerExtrapolation: Parallelized Implicit Extrapolation Method Extrapolation of implicit Euler method with Romberg sequence. Similar to Hairer's SEULEX. """ -struct ImplicitEulerExtrapolation{CS, AD, F, P, FDT, ST, CJ, TO} <: +struct ImplicitEulerExtrapolation{CS, AD, F, FDT, ST, CJ, TO} <: OrdinaryDiffEqImplicitExtrapolationAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P max_order::Int min_order::Int init_order::Int @@ -35,7 +34,6 @@ end function ImplicitEulerExtrapolation(; chunk_size = Val{0}(), autodiff = true, standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, linsolve = nothing, - precs = DEFAULT_PRECS, max_order = 12, min_order = 3, init_order = 5, threading = false, sequence = :harmonic) linsolve = (linsolve === nothing && @@ -66,11 +64,10 @@ Initial order: " * lpad(init_order, 2, " ") * " --> " * lpad(init_order, 2, " ") sequence = :harmonic end ImplicitEulerExtrapolation{_unwrap_val(chunk_size), _unwrap_val(autodiff), - typeof(linsolve), typeof(precs), diff_type, + typeof(linsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), - typeof(threading)}(linsolve, precs, max_order, min_order, - init_order, - threading, sequence) + typeof(threading)}(linsolve, max_order, min_order, + init_order, threading, sequence) end """ ExtrapolationMidpointDeuflhard: Parallelized Explicit Extrapolation Method @@ -129,10 +126,9 @@ end ImplicitDeuflhardExtrapolation: Parallelized Implicit Extrapolation Method Midpoint extrapolation using Barycentric coordinates """ -struct ImplicitDeuflhardExtrapolation{CS, AD, F, P, FDT, ST, CJ, TO} <: +struct ImplicitDeuflhardExtrapolation{CS, AD, F, FDT, ST, CJ, TO} <: OrdinaryDiffEqImplicitExtrapolationAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P min_order::Int # Minimal extrapolation order init_order::Int # Initial extrapolation order max_order::Int # Maximal extrapolation order @@ -141,8 +137,7 @@ struct ImplicitDeuflhardExtrapolation{CS, AD, F, P, FDT, ST, CJ, TO} <: end function ImplicitDeuflhardExtrapolation(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, - linsolve = nothing, precs = DEFAULT_PRECS, - diff_type = Val{:forward}, + linsolve = nothing, diff_type = Val{:forward}, min_order = 1, init_order = 5, max_order = 10, sequence = :harmonic, threading = false) # Enforce 1 <= min_order <= init_order <= max_order: @@ -177,9 +172,9 @@ Initial order: " * lpad(init_order, 2, " ") * " --> " * lpad(init_order, 2, " ") # Initialize algorithm ImplicitDeuflhardExtrapolation{_unwrap_val(chunk_size), _unwrap_val(autodiff), - typeof(linsolve), typeof(precs), diff_type, + typeof(linsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), - typeof(threading)}(linsolve, precs, min_order, + typeof(threading)}(linsolve, min_order, init_order, max_order, sequence, threading) end @@ -242,10 +237,9 @@ end ImplicitHairerWannerExtrapolation: Parallelized Implicit Extrapolation Method Midpoint extrapolation using Barycentric coordinates, following Hairer's SODEX in the adaptivity behavior. """ -struct ImplicitHairerWannerExtrapolation{CS, AD, F, P, FDT, ST, CJ, TO} <: +struct ImplicitHairerWannerExtrapolation{CS, AD, F, FDT, ST, CJ, TO} <: OrdinaryDiffEqImplicitExtrapolationAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P min_order::Int # Minimal extrapolation order init_order::Int # Initial extrapolation order max_order::Int # Maximal extrapolation order @@ -256,7 +250,7 @@ end function ImplicitHairerWannerExtrapolation(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, - linsolve = nothing, precs = DEFAULT_PRECS, + linsolve = nothing, diff_type = Val{:forward}, min_order = 2, init_order = 5, max_order = 10, sequence = :harmonic, threading = false) @@ -292,21 +286,19 @@ Initial order: " * lpad(init_order, 2, " ") * " --> " * lpad(init_order, 2, " ") # Initialize algorithm ImplicitHairerWannerExtrapolation{_unwrap_val(chunk_size), _unwrap_val(autodiff), - typeof(linsolve), typeof(precs), diff_type, + typeof(linsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), - typeof(threading)}(linsolve, precs, min_order, - init_order, - max_order, sequence, threading) + typeof(threading)}(linsolve, min_order, + init_order, max_order, sequence, threading) end """ ImplicitEulerBarycentricExtrapolation: Parallelized Implicit Extrapolation Method Euler extrapolation using Barycentric coordinates, following Hairer's SODEX in the adaptivity behavior. """ -struct ImplicitEulerBarycentricExtrapolation{CS, AD, F, P, FDT, ST, CJ, TO} <: +struct ImplicitEulerBarycentricExtrapolation{CS, AD, F, FDT, ST, CJ, TO} <: OrdinaryDiffEqImplicitExtrapolationAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P min_order::Int # Minimal extrapolation order init_order::Int # Initial extrapolation order max_order::Int # Maximal extrapolation order @@ -319,7 +311,7 @@ function ImplicitEulerBarycentricExtrapolation(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, - linsolve = nothing, precs = DEFAULT_PRECS, + linsolve = nothing, diff_type = Val{:forward}, min_order = 3, init_order = 5, max_order = 12, sequence = :harmonic, @@ -356,10 +348,9 @@ Initial order: " * lpad(init_order, 2, " ") * " --> " * lpad(init_order, 2, " ") # Initialize algorithm ImplicitEulerBarycentricExtrapolation{_unwrap_val(chunk_size), _unwrap_val(autodiff), - typeof(linsolve), typeof(precs), diff_type, + typeof(linsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(threading)}(linsolve, - precs, min_order, init_order, max_order, diff --git a/lib/OrdinaryDiffEqExtrapolation/src/extrapolation_caches.jl b/lib/OrdinaryDiffEqExtrapolation/src/extrapolation_caches.jl index 7ede4e5b1a..88385fc466 100644 --- a/lib/OrdinaryDiffEqExtrapolation/src/extrapolation_caches.jl +++ b/lib/OrdinaryDiffEqExtrapolation/src/extrapolation_caches.jl @@ -263,18 +263,14 @@ function alg_cache(alg::ImplicitEulerExtrapolation, u, rate_prototype, linsolve_tmps[i] = zero(rate_prototype) end - linprob = LinearProblem(W[1], _vec(linsolve_tmps[1]); u0 = _vec(k_tmps[1])) + linprob = LinearProblem(W[1], _vec(linsolve_tmps[1]), (nothing, u, p, t); u0 = _vec(k_tmps[1])) linsolve1 = init(linprob, alg.linsolve, alias_A = true, alias_b = true) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) linsolve = Array{typeof(linsolve1), 1}(undef, Threads.nthreads()) linsolve[1] = linsolve1 for i in 2:Threads.nthreads() - linprob = LinearProblem(W[i], _vec(linsolve_tmps[i]); u0 = _vec(k_tmps[i])) + linprob = LinearProblem(W[i], _vec(linsolve_tmps[i]), (nothing, u, p, t); u0 = _vec(k_tmps[i])) linsolve[i] = init(linprob, alg.linsolve, alias_A = true, alias_b = true) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) end res = uEltypeNoUnits.(zero(u)) @@ -1150,18 +1146,14 @@ function alg_cache(alg::ImplicitDeuflhardExtrapolation, u, rate_prototype, linsolve_tmps[i] = zero(rate_prototype) end - linprob = LinearProblem(W[1], _vec(linsolve_tmps[1]); u0 = _vec(k_tmps[1])) + linprob = LinearProblem(W[1], _vec(linsolve_tmps[1]), (nothing, u, p, t); u0 = _vec(k_tmps[1])) linsolve1 = init(linprob, alg.linsolve, alias_A = true, alias_b = true) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) linsolve = Array{typeof(linsolve1), 1}(undef, Threads.nthreads()) linsolve[1] = linsolve1 for i in 2:Threads.nthreads() - linprob = LinearProblem(W[i], _vec(linsolve_tmps[i]); u0 = _vec(k_tmps[i])) + linprob = LinearProblem(W[i], _vec(linsolve_tmps[i]), (nothing, u, p, t); u0 = _vec(k_tmps[i])) linsolve[i] = init(linprob, alg.linsolve, alias_A = true, alias_b = true) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) end grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, du1, du2) @@ -1478,18 +1470,14 @@ function alg_cache(alg::ImplicitHairerWannerExtrapolation, u, rate_prototype, linsolve_tmps[i] = zero(rate_prototype) end - linprob = LinearProblem(W[1], _vec(linsolve_tmps[1]); u0 = _vec(k_tmps[1])) + linprob = LinearProblem(W[1], _vec(linsolve_tmps[1]), (nothing, u, p, t); u0 = _vec(k_tmps[1])) linsolve1 = init(linprob, alg.linsolve, alias_A = true, alias_b = true) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) linsolve = Array{typeof(linsolve1), 1}(undef, Threads.nthreads()) linsolve[1] = linsolve1 for i in 2:Threads.nthreads() - linprob = LinearProblem(W[i], _vec(linsolve_tmps[i]); u0 = _vec(k_tmps[i])) + linprob = LinearProblem(W[i], _vec(linsolve_tmps[i]), (nothing, u, p, t); u0 = _vec(k_tmps[i])) linsolve[i] = init(linprob, alg.linsolve, alias_A = true, alias_b = true) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) end grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, du1, du2) @@ -1674,18 +1662,14 @@ function alg_cache(alg::ImplicitEulerBarycentricExtrapolation, u, rate_prototype linsolve_tmps[i] = zero(rate_prototype) end - linprob = LinearProblem(W[1], _vec(linsolve_tmps[1]); u0 = _vec(k_tmps[1])) + linprob = LinearProblem(W[1], _vec(linsolve_tmps[1]), (nothing, u, p, t); u0 = _vec(k_tmps[1])) linsolve1 = init(linprob, alg.linsolve, alias_A = true, alias_b = true) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) linsolve = Array{typeof(linsolve1), 1}(undef, Threads.nthreads()) linsolve[1] = linsolve1 for i in 2:Threads.nthreads() - linprob = LinearProblem(W[i], _vec(linsolve_tmps[i]); u0 = _vec(k_tmps[i])) + linprob = LinearProblem(W[i], _vec(linsolve_tmps[i]), (nothing, u, p, t); u0 = _vec(k_tmps[i])) linsolve[i] = init(linprob, alg.linsolve, alias_A = true, alias_b = true) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) end grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, du1, du2) diff --git a/lib/OrdinaryDiffEqFIRK/src/algorithms.jl b/lib/OrdinaryDiffEqFIRK/src/algorithms.jl index d95430f5a5..e9ba0fc116 100644 --- a/lib/OrdinaryDiffEqFIRK/src/algorithms.jl +++ b/lib/OrdinaryDiffEqFIRK/src/algorithms.jl @@ -15,10 +15,9 @@ publisher={Elsevier} RadauIIA3: Fully-Implicit Runge-Kutta Method An A-B-L stable fully implicit Runge-Kutta method with internal tableau complex basis transform for efficiency. """ -struct RadauIIA3{CS, AD, F, P, FDT, ST, CJ, Tol, C1, C2, StepLimiter} <: +struct RadauIIA3{CS, AD, F, FDT, ST, CJ, Tol, C1, C2, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P extrapolant::Symbol κ::Tol maxiters::Int @@ -31,16 +30,15 @@ end function RadauIIA3(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, + linsolve = nothing, extrapolant = :dense, fast_convergence_cutoff = 1 // 5, new_W_γdt_cutoff = 1 // 5, controller = :Predictive, κ = nothing, maxiters = 10, step_limiter! = trivial_limiter!) RadauIIA3{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(κ), typeof(fast_convergence_cutoff), typeof(new_W_γdt_cutoff), typeof(step_limiter!)}(linsolve, - precs, extrapolant, κ, maxiters, @@ -65,10 +63,9 @@ publisher={Elsevier} RadauIIA5: Fully-Implicit Runge-Kutta Method An A-B-L stable fully implicit Runge-Kutta method with internal tableau complex basis transform for efficiency. """ -struct RadauIIA5{CS, AD, F, P, FDT, ST, CJ, Tol, C1, C2, StepLimiter} <: +struct RadauIIA5{CS, AD, F, FDT, ST, CJ, Tol, C1, C2, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P smooth_est::Bool extrapolant::Symbol κ::Tol @@ -82,16 +79,15 @@ end function RadauIIA5(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, + linsolve = nothing, extrapolant = :dense, fast_convergence_cutoff = 1 // 5, new_W_γdt_cutoff = 1 // 5, controller = :Predictive, κ = nothing, maxiters = 10, smooth_est = true, step_limiter! = trivial_limiter!) RadauIIA5{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(κ), typeof(fast_convergence_cutoff), typeof(new_W_γdt_cutoff), typeof(step_limiter!)}(linsolve, - precs, smooth_est, extrapolant, κ, @@ -117,10 +113,9 @@ publisher={Elsevier} RadauIIA9: Fully-Implicit Runge-Kutta Method An A-B-L stable fully implicit Runge-Kutta method with internal tableau complex basis transform for efficiency. """ -struct RadauIIA9{CS, AD, F, P, FDT, ST, CJ, Tol, C1, C2, StepLimiter} <: +struct RadauIIA9{CS, AD, F, FDT, ST, CJ, Tol, C1, C2, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P smooth_est::Bool extrapolant::Symbol κ::Tol @@ -134,16 +129,15 @@ end function RadauIIA9(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, + linsolve = nothing, extrapolant = :dense, fast_convergence_cutoff = 1 // 5, new_W_γdt_cutoff = 1 // 5, controller = :Predictive, κ = nothing, maxiters = 10, smooth_est = true, step_limiter! = trivial_limiter!) RadauIIA9{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(κ), typeof(fast_convergence_cutoff), typeof(new_W_γdt_cutoff), typeof(step_limiter!)}(linsolve, - precs, smooth_est, extrapolant, κ, diff --git a/lib/OrdinaryDiffEqFIRK/src/firk_caches.jl b/lib/OrdinaryDiffEqFIRK/src/firk_caches.jl index 516775e085..98293fe81d 100644 --- a/lib/OrdinaryDiffEqFIRK/src/firk_caches.jl +++ b/lib/OrdinaryDiffEqFIRK/src/firk_caches.jl @@ -107,11 +107,9 @@ function alg_cache(alg::RadauIIA3, u, rate_prototype, ::Type{uEltypeNoUnits}, recursivefill!(atmp, false) jac_config = jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, dw12) - linprob = LinearProblem(W1, _vec(cubuff); u0 = _vec(dw12)) + linprob = LinearProblem(W1, _vec(cubuff), (nothing,u,p,t); u0 = _vec(dw12)) linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) rtol = reltol isa Number ? reltol : zero(reltol) atol = reltol isa Number ? reltol : zero(reltol) @@ -252,16 +250,12 @@ function alg_cache(alg::RadauIIA5, u, rate_prototype, ::Type{uEltypeNoUnits}, recursivefill!(atmp, false) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, dw1) - linprob = LinearProblem(W1, _vec(ubuff); u0 = _vec(dw1)) + linprob = LinearProblem(W1, _vec(ubuff), (nothing,u,p,t); u0 = _vec(dw1)) linsolve1 = init(linprob, alg.linsolve, alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) - linprob = LinearProblem(W2, _vec(cubuff); u0 = _vec(dw23)) + linprob = LinearProblem(W2, _vec(cubuff), (nothing,u,p,t); u0 = _vec(dw23)) linsolve2 = init(linprob, alg.linsolve, alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) rtol = reltol isa Number ? reltol : zero(reltol) atol = reltol isa Number ? reltol : zero(reltol) @@ -441,21 +435,15 @@ function alg_cache(alg::RadauIIA9, u, rate_prototype, ::Type{uEltypeNoUnits}, recursivefill!(atmp, false) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, dw1) - linprob = LinearProblem(W1, _vec(ubuff); u0 = _vec(dw1)) + linprob = LinearProblem(W1, _vec(ubuff), (nothing,u,p,t); u0 = _vec(dw1)) linsolve1 = init(linprob, alg.linsolve, alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) - linprob = LinearProblem(W2, _vec(cubuff1); u0 = _vec(dw23)) + linprob = LinearProblem(W2, _vec(cubuff1), (nothing,u,p,t); u0 = _vec(dw23)) linsolve2 = init(linprob, alg.linsolve, alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) - linprob = LinearProblem(W3, _vec(cubuff2); u0 = _vec(dw45)) + linprob = LinearProblem(W3, _vec(cubuff2), (nothing,u,p,t); u0 = _vec(dw45)) linsolve3 = init(linprob, alg.linsolve, alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) - #Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), - #Pr = Diagonal(_vec(weight))) rtol = reltol isa Number ? reltol : zero(reltol) atol = reltol isa Number ? reltol : zero(reltol) diff --git a/lib/OrdinaryDiffEqIMEXMultistep/src/algorithms.jl b/lib/OrdinaryDiffEqIMEXMultistep/src/algorithms.jl index 2aca6a5bd6..1af29b8689 100644 --- a/lib/OrdinaryDiffEqIMEXMultistep/src/algorithms.jl +++ b/lib/OrdinaryDiffEqIMEXMultistep/src/algorithms.jl @@ -1,42 +1,37 @@ # IMEX Multistep methods -struct CNAB2{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct CNAB2{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol end function CNAB2(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), - extrapolant = :linear) + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear) CNAB2{ _unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), typeof(nlsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}( + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}( linsolve, nlsolve, - precs, extrapolant) end -struct CNLF2{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct CNLF2{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol end function CNLF2(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear) CNLF2{ _unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), typeof(nlsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}( + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}( linsolve, nlsolve, - precs, extrapolant) end diff --git a/lib/OrdinaryDiffEqNonlinearSolve/src/utils.jl b/lib/OrdinaryDiffEqNonlinearSolve/src/utils.jl index 3bed6a453a..bf11eb0d49 100644 --- a/lib/OrdinaryDiffEqNonlinearSolve/src/utils.jl +++ b/lib/OrdinaryDiffEqNonlinearSolve/src/utils.jl @@ -191,14 +191,10 @@ function build_nlsolver( end jac_config = build_jac_config(alg, nf, uf, du1, uprev, u, ztmp, dz) end - linprob = LinearProblem(W, _vec(k); u0 = _vec(dz)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., - weight, dz) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, - assumptions = LinearSolve.OperatorAssumptions(true)) + linprob = LinearProblem(W, _vec(k), (isdae ? du1 : nothing,u,p,t); u0 = _vec(dz)) + linsolve = init(linprob, + wrapprecs(alg.linsolve, W, weight), + (isdae ? du1 : nothing,u,p,t); alias_A = true, alias_b = true) tType = typeof(t) invγdt = inv(oneunit(t) * one(uTolType)) diff --git a/lib/OrdinaryDiffEqPDIRK/src/algorithms.jl b/lib/OrdinaryDiffEqPDIRK/src/algorithms.jl index 264feb64a0..b0813d30ec 100644 --- a/lib/OrdinaryDiffEqPDIRK/src/algorithms.jl +++ b/lib/OrdinaryDiffEqPDIRK/src/algorithms.jl @@ -5,20 +5,19 @@ PDIRK44: Parallel Diagonally Implicit Runge-Kutta Method A 2 processor 4th order diagonally non-adaptive implicit method. """ -struct PDIRK44{CS, AD, F, F2, P, FDT, ST, CJ, TO} <: +struct PDIRK44{CS, AD, F, F2, FDT, ST, CJ, TO} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol threading::TO end function PDIRK44(; chunk_size = Val{0}(), autodiff = true, standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :constant, threading = true) PDIRK44{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac), typeof(threading)}(linsolve, nlsolve, precs, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac), typeof(threading)}(linsolve, nlsolve, extrapolant, threading) end diff --git a/lib/OrdinaryDiffEqRosenbrock/src/algorithms.jl b/lib/OrdinaryDiffEqRosenbrock/src/algorithms.jl index 03cbfae9d4..59a493b904 100644 --- a/lib/OrdinaryDiffEqRosenbrock/src/algorithms.jl +++ b/lib/OrdinaryDiffEqRosenbrock/src/algorithms.jl @@ -104,22 +104,21 @@ for Alg in [ :Rodas5Pe, :Rodas5Pr] @eval begin - struct $Alg{CS, AD, F, P, FDT, ST, CJ, StepLimiter, StageLimiter} <: + struct $Alg{CS, AD, F, FDT, ST, CJ, StepLimiter, StageLimiter} <: OrdinaryDiffEqRosenbrockAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P step_limiter!::StepLimiter stage_limiter!::StageLimiter end function $Alg(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, linsolve = nothing, - precs = DEFAULT_PRECS, step_limiter! = trivial_limiter!, + step_limiter! = trivial_limiter!, stage_limiter! = trivial_limiter!) $Alg{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(step_limiter!), - typeof(stage_limiter!)}(linsolve, precs, step_limiter!, + typeof(stage_limiter!)}(linsolve, step_limiter!, stage_limiter!) end end @@ -147,20 +146,17 @@ end references = """ https://doi.org/10.1016/j.cam.2009.09.017 """) -struct RosenbrockW6S4OS{CS, AD, F, P, FDT, ST, CJ} <: +struct RosenbrockW6S4OS{CS, AD, F, FDT, ST, CJ} <: OrdinaryDiffEqRosenbrockAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P end function RosenbrockW6S4OS(; chunk_size = Val{0}(), autodiff = true, standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:central}, - linsolve = nothing, - precs = DEFAULT_PRECS) + linsolve = nothing) RosenbrockW6S4OS{_unwrap_val(chunk_size), - _unwrap_val(autodiff), typeof(linsolve), typeof(precs), diff_type, - _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, - precs) + _unwrap_val(autodiff), typeof(linsolve), diff_type, + _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve) end for Alg in [ @@ -185,18 +181,16 @@ for Alg in [ :GRK4A, :Ros4LStab] @eval begin - struct $Alg{CS, AD, F, P, FDT, ST, CJ} <: + struct $Alg{CS, AD, F, FDT, ST, CJ} <: OrdinaryDiffEqRosenbrockAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F - precs::P end function $Alg(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, - diff_type = Val{:forward}, linsolve = nothing, precs = DEFAULT_PRECS) + diff_type = Val{:forward}, linsolve = nothing) $Alg{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, - precs) + diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve) end end end diff --git a/lib/OrdinaryDiffEqRosenbrock/src/generic_rosenbrock.jl b/lib/OrdinaryDiffEqRosenbrock/src/generic_rosenbrock.jl index 5600b1bc27..0e0b54a238 100644 --- a/lib/OrdinaryDiffEqRosenbrock/src/generic_rosenbrock.jl +++ b/lib/OrdinaryDiffEqRosenbrock/src/generic_rosenbrock.jl @@ -247,7 +247,7 @@ function gen_algcache(cacheexpr::Expr,constcachename::Symbol,algname::Symbol,tab tf = TimeGradientWrapper(f,uprev,p) uf = UJacobianWrapper(f,t,p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W,_vec(linsolve_tmp); u0=_vec(tmp)) + linprob = LinearProblem(W,_vec(linsolve_tmp), (nothing, u, p, t); u0=_vec(tmp)) linsolve = init(linprob,alg.linsolve,alias_A=true,alias_b=true, Pl = LinearSolve.InvPreconditioner(Diagonal(_vec(weight))), Pr = Diagonal(_vec(weight))) @@ -995,7 +995,7 @@ references = """ """, "Rodas3", references = """ -- Steinebach G. Construction of Rosenbrock–Wanner method Rodas5P and numerical benchmarks +- Steinebach G. Construction of Rosenbrock–Wanner method Rodas5P and numerical benchmarks within the Julia Differential Equations package. In: BIT Numerical Mathematics, 63(2), 2023 """, @@ -1056,7 +1056,7 @@ lower if not corrected). """, "Rodas4P", references = """ -- Steinebach G., Rodas23W / Rodas32P - a Rosenbrock-type method for DAEs with additional error estimate +- Steinebach G., Rodas23W / Rodas32P - a Rosenbrock-type method for DAEs with additional error estimate for dense output and Julia implementation, In progress. """, @@ -1070,7 +1070,7 @@ of Roadas4P and in case of inexact Jacobians a second order W method. """, "Rodas4P2", references = """ -- Steinebach G., Rodas23W / Rodas32P - a Rosenbrock-type method for DAEs with additional error estimate +- Steinebach G., Rodas23W / Rodas32P - a Rosenbrock-type method for DAEs with additional error estimate for dense output and Julia implementation, In progress. """, @@ -1095,7 +1095,7 @@ Has improved stability in the adaptive time stepping embedding. """, "Rodas5P", references = """ -- Steinebach G. Construction of Rosenbrock–Wanner method Rodas5P and numerical benchmarks +- Steinebach G. Construction of Rosenbrock–Wanner method Rodas5P and numerical benchmarks within the Julia Differential Equations package. In: BIT Numerical Mathematics, 63(2), 2023 """, @@ -1225,10 +1225,10 @@ references = """ ROS2PRTableau() 2nd order stiffly accurate Rosenbrock method with 3 internal stages with (Rinf=0). -For problems with medium stiffness the convergence behaviour is very poor and it is recommended to use +For problems with medium stiffness the convergence behaviour is very poor and it is recommended to use [`ROS2S`](@ref) instead. -Rang, Joachim (2014): The Prothero and Robinson example: +Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0 """ function ROS2PRTableau() # 2nd order @@ -1248,7 +1248,7 @@ end @doc rosenbrock_docstring( """ 2nd order stiffly accurate Rosenbrock method with 3 internal stages with (Rinf=0). -For problems with medium stiffness the convergence behaviour is very poor and it is recommended to use +For problems with medium stiffness the convergence behaviour is very poor and it is recommended to use [`ROS2S`](@ref) instead. """, "ROS2PR", @@ -1267,7 +1267,7 @@ ROS2PR 2nd order stiffly accurate Rosenbrock-Wanner W-method with 3 internal stages with B_PR consistent of order 2 with (Rinf=0). More Information at https://doi.org/10.24355/dbbs.084-201408121139-0 -Rang, Joachim (2014): The Prothero and Robinson example: +Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0 """ function ROS2STableau() # 2nd order @@ -1335,7 +1335,7 @@ references = """ 3nd order stiffly accurate Rosenbrock-Wanner method with 3 internal stages with B_PR consistent of order 3, which is strongly A-stable with Rinf~=-0.73. -Rang, Joachim (2014): The Prothero and Robinson example: +Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0 """ function ROS3PRTableau() # 3rd order @@ -1371,7 +1371,7 @@ references = """ 3nd order stiffly accurate Rosenbrock method with 3 internal stages with B_PR consistent of order 3, which is strongly A-stable with Rinf~=-0.73 Convergence with order 4 for the stiff case, but has a poor accuracy. -Rang, Joachim (2014): The Prothero and Robinson example: +Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0 """ function Scholz4_7Tableau() # 3rd order @@ -1599,7 +1599,7 @@ references = """ B_PR consistent of order 2 with Rinf=0. The order of convergence decreases if medium stiff problems are considered, but it has good results for very stiff cases. -Rang, Joachim (2014): The Prothero and Robinson example: +Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0 """ function ROS3PRLTableau() # 3rd order @@ -1639,7 +1639,7 @@ references = """ B_PR consistent of order 3. The order of convergence does NOT decreases if medium stiff problems are considered as it does for [`ROS3PRL`](@ref). -Rang, Joachim (2014): The Prothero and Robinson example: +Rang, Joachim (2014): The Prothero and Robinson example: Convergence studies for Runge-Kutta and Rosenbrock-Wanner methods. https://doi.org/10.24355/dbbs.084-201408121139-0 """ function ROS3PRL2Tableau() # 3rd order @@ -1677,7 +1677,7 @@ references = """ 4rd order L-stable Rosenbrock-Krylov method with 4 internal stages, with a 3rd order embedded method which is strongly A-stable with Rinf~=0.55. (when using exact Jacobians) -Tranquilli, Paul and Sandu, Adrian (2014): Rosenbrock--Krylov Methods for Large Systems of Differential Equations +Tranquilli, Paul and Sandu, Adrian (2014): Rosenbrock--Krylov Methods for Large Systems of Differential Equations https://doi.org/10.1137/130923336 """ function ROK4aTableau() # 4rd order @@ -1703,7 +1703,7 @@ with a 3rd order embedded method which is strongly A-stable with Rinf~=0.55. (wh """, "ROK4a", references = """ -- Tranquilli, Paul and Sandu, Adrian (2014): +- Tranquilli, Paul and Sandu, Adrian (2014): Rosenbrock--Krylov Methods for Large Systems of Differential Equations https://doi.org/10.1137/130923336 """) ROK4a diff --git a/lib/OrdinaryDiffEqRosenbrock/src/rosenbrock_caches.jl b/lib/OrdinaryDiffEqRosenbrock/src/rosenbrock_caches.jl index 4a266e77f3..214815c3fa 100644 --- a/lib/OrdinaryDiffEqRosenbrock/src/rosenbrock_caches.jl +++ b/lib/OrdinaryDiffEqRosenbrock/src/rosenbrock_caches.jl @@ -99,12 +99,8 @@ function alg_cache(alg::Rosenbrock23, u, rate_prototype, ::Type{uEltypeNoUnits}, uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) @@ -144,13 +140,9 @@ function alg_cache(alg::Rosenbrock32, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2, Val(false)) @@ -293,12 +285,8 @@ function alg_cache(alg::ROS3P, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) @@ -379,12 +367,8 @@ function alg_cache(alg::Rodas3, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) @@ -572,12 +556,8 @@ function alg_cache(alg::Rodas23W, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) @@ -616,12 +596,8 @@ function alg_cache(alg::Rodas3P, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) @@ -739,12 +715,8 @@ function alg_cache(alg::Rodas4, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) @@ -799,12 +771,8 @@ function alg_cache(alg::Rodas42, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) @@ -859,12 +827,8 @@ function alg_cache(alg::Rodas4P, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) @@ -919,12 +883,8 @@ function alg_cache(alg::Rodas4P2, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) @@ -1036,12 +996,8 @@ function alg_cache(alg::Rodas5, u, rate_prototype, ::Type{uEltypeNoUnits}, tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true, assumptions = LinearSolve.OperatorAssumptions(true)) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) @@ -1100,13 +1056,8 @@ function alg_cache( tf = TimeGradientWrapper(f, uprev, p) uf = UJacobianWrapper(f, t, p) linsolve_tmp = zero(rate_prototype) - linprob = LinearProblem(W, _vec(linsolve_tmp); u0 = _vec(tmp)) - Pl, Pr = wrapprecs( - alg.precs(W, nothing, u, p, t, nothing, nothing, nothing, - nothing)..., weight, tmp) - linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true, - Pl = Pl, Pr = Pr, - assumptions = LinearSolve.OperatorAssumptions(true)) + linprob = LinearProblem(W, _vec(linsolve_tmp), (nothing,u,p,t); u0 = _vec(tmp)) + linsolve = init(linprob, wrapprecs(alg.linsolve, W, weight), alias_A = true, alias_b = true) grad_config = build_grad_config(alg, f, tf, du1, t) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, du2) Rosenbrock5Cache(u, uprev, dense1, dense2, dense3, du, du1, du2, k1, k2, k3, k4, diff --git a/lib/OrdinaryDiffEqRosenbrock/src/rosenbrock_perform_step.jl b/lib/OrdinaryDiffEqRosenbrock/src/rosenbrock_perform_step.jl index a724abbc52..fac119f814 100644 --- a/lib/OrdinaryDiffEqRosenbrock/src/rosenbrock_perform_step.jl +++ b/lib/OrdinaryDiffEqRosenbrock/src/rosenbrock_perform_step.jl @@ -48,16 +48,7 @@ end integrator.opts.abstol, integrator.opts.reltol, integrator.opts.internalnorm, t) - if repeat_step - linres = dolinsolve( - integrator, cache.linsolve; A = nothing, b = _vec(linsolve_tmp), - du = integrator.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = γ)) - else - linres = dolinsolve(integrator, cache.linsolve; A = W, b = _vec(linsolve_tmp), - du = integrator.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = γ)) - end + linres = dolinsolve(integrator, cache.linsolve; A = repeat_step ? nothing : W, b = _vec(linsolve_tmp)) vecu = _vec(linres.u) veck₁ = _vec(k₁) @@ -160,16 +151,7 @@ end integrator.opts.abstol, integrator.opts.reltol, integrator.opts.internalnorm, t) - if repeat_step - linres = dolinsolve( - integrator, cache.linsolve; A = nothing, b = _vec(linsolve_tmp), - du = integrator.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = γ)) - else - linres = dolinsolve(integrator, cache.linsolve; A = W, b = _vec(linsolve_tmp), - du = integrator.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = γ)) - end + linres = dolinsolve(integrator, cache.linsolve; A = repeat_step ? nothing : W, b = _vec(linsolve_tmp)) vecu = _vec(linres.u) veck₁ = _vec(k₁) @@ -517,16 +499,7 @@ end integrator.opts.abstol, integrator.opts.reltol, integrator.opts.internalnorm, t) - if repeat_step - linres = dolinsolve( - integrator, cache.linsolve; A = nothing, b = _vec(linsolve_tmp), - du = integrator.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - else - linres = dolinsolve(integrator, cache.linsolve; A = W, b = _vec(linsolve_tmp), - du = integrator.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - end + linres = dolinsolve(integrator, cache.linsolve; A = repeat_step ? nothing : W, b = _vec(linsolve_tmp)) vecu = _vec(linres.u) veck1 = _vec(k1) @@ -712,16 +685,7 @@ end integrator.opts.abstol, integrator.opts.reltol, integrator.opts.internalnorm, t) - if repeat_step - linres = dolinsolve( - integrator, cache.linsolve; A = nothing, b = _vec(linsolve_tmp), - du = integrator.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - else - linres = dolinsolve(integrator, cache.linsolve; A = W, b = _vec(linsolve_tmp), - du = integrator.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - end + linres = dolinsolve(integrator, cache.linsolve; A = repeat_step ? nothing : W, b = _vec(linsolve_tmp)) vecu = _vec(linres.u) veck1 = _vec(k1) @@ -1020,16 +984,7 @@ end integrator.opts.abstol, integrator.opts.reltol, integrator.opts.internalnorm, t) - if repeat_step - linres = dolinsolve( - integrator, cache.linsolve; A = nothing, b = _vec(linsolve_tmp), - du = cache.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - else - linres = dolinsolve(integrator, cache.linsolve; A = W, b = _vec(linsolve_tmp), - du = cache.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - end + linres = dolinsolve(integrator, cache.linsolve; A = repeat_step ? nothing : W, b = _vec(linsolve_tmp)) @.. broadcast=false $(_vec(k1))=-linres.u @@ -1383,16 +1338,7 @@ end integrator.opts.abstol, integrator.opts.reltol, integrator.opts.internalnorm, t) - if repeat_step - linres = dolinsolve( - integrator, cache.linsolve; A = nothing, b = _vec(linsolve_tmp), - du = cache.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - else - linres = dolinsolve(integrator, cache.linsolve; A = W, b = _vec(linsolve_tmp), - du = cache.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - end + linres = dolinsolve(integrator, cache.linsolve; A = repeat_step ? nothing : W, b = _vec(linsolve_tmp)) @.. broadcast=false $(_vec(k1))=-linres.u @@ -1786,16 +1732,7 @@ end integrator.opts.abstol, integrator.opts.reltol, integrator.opts.internalnorm, t) - if repeat_step - linres = dolinsolve( - integrator, cache.linsolve; A = nothing, b = _vec(linsolve_tmp), - du = cache.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - else - linres = dolinsolve(integrator, cache.linsolve; A = W, b = _vec(linsolve_tmp), - du = cache.fsalfirst, u = u, p = p, t = t, weight = weight, - solverdata = (; gamma = dtgamma)) - end + linres = dolinsolve(integrator, cache.linsolve; A = repeat_step ? nothing : W, b = _vec(linsolve_tmp)) vecu = _vec(linres.u) veck1 = _vec(k1) diff --git a/lib/OrdinaryDiffEqSDIRK/src/algorithms.jl b/lib/OrdinaryDiffEqSDIRK/src/algorithms.jl index 01f796f650..8a105c7203 100644 --- a/lib/OrdinaryDiffEqSDIRK/src/algorithms.jl +++ b/lib/OrdinaryDiffEqSDIRK/src/algorithms.jl @@ -4,11 +4,10 @@ ImplicitEuler: SDIRK Method A 1st order implicit solver. A-B-L-stable. Adaptive timestepping through a divided differences estimate via memory. Strong-stability preserving (SSP). """ -struct ImplicitEuler{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct ImplicitEuler{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol step_limiter!::StepLimiter @@ -17,24 +16,23 @@ end function ImplicitEuler(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :constant, controller = :PI, step_limiter! = trivial_limiter!) ImplicitEuler{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, - nlsolve, precs, extrapolant, controller, step_limiter!) + nlsolve, extrapolant, controller, step_limiter!) end """ ImplicitMidpoint: SDIRK Method A second order A-stable symplectic and symmetric implicit solver. Good for highly stiff equations which need symplectic integration. """ -struct ImplicitMidpoint{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct ImplicitMidpoint{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol step_limiter!::StepLimiter end @@ -42,13 +40,12 @@ end function ImplicitMidpoint(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, step_limiter! = trivial_limiter!) ImplicitMidpoint{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, - precs, extrapolant, step_limiter!) end @@ -64,11 +61,10 @@ Also known as Crank-Nicolson when applied to PDEs. Adaptive timestepping via div differences approximation to the second derivative terms in the local truncation error estimate (the SPICE approximation strategy). """ -struct Trapezoid{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct Trapezoid{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol step_limiter!::StepLimiter @@ -77,14 +73,13 @@ end function Trapezoid(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) Trapezoid{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, - precs, extrapolant, controller, step_limiter!) @@ -106,11 +101,10 @@ TRBDF2: SDIRK Method A second order A-B-L-S-stable one-step ESDIRK method. Includes stiffness-robust error estimates for accurate adaptive timestepping, smoothed derivatives for highly stiff and oscillatory problems. """ -struct TRBDF2{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct TRBDF2{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -119,12 +113,12 @@ end function TRBDF2(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) TRBDF2{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, precs, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, smooth_est, extrapolant, controller, step_limiter!) end @@ -145,11 +139,10 @@ publisher={ACM} SDIRK2: SDIRK Method An A-B-L stable 2nd order SDIRK method """ -struct SDIRK2{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct SDIRK2{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -158,22 +151,21 @@ end function SDIRK2(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) SDIRK2{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(step_limiter!)}( - linsolve, nlsolve, precs, smooth_est, extrapolant, + linsolve, nlsolve, smooth_est, extrapolant, controller, step_limiter!) end -struct SDIRK22{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct SDIRK22{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol step_limiter!::StepLimiter @@ -182,24 +174,22 @@ end function SDIRK22(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) Trapezoid{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, - precs, extrapolant, controller, step_limiter!) end -struct SSPSDIRK2{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct SSPSDIRK2{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} # Not adaptive linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -208,12 +198,12 @@ end function SSPSDIRK2(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :constant, controller = :PI) SSPSDIRK2{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, smooth_est, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, smooth_est, extrapolant, controller) end @@ -232,11 +222,10 @@ publisher={Springer} Kvaerno3: SDIRK Method An A-L stable stiffly-accurate 3rd order ESDIRK method """ -struct Kvaerno3{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct Kvaerno3{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -245,12 +234,12 @@ end function Kvaerno3(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) Kvaerno3{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, precs, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, smooth_est, extrapolant, controller, step_limiter!) end @@ -265,11 +254,10 @@ publisher={National Aeronautics and Space Administration, Langley Research Cente KenCarp3: SDIRK Method An A-L stable stiffly-accurate 3rd order ESDIRK method with splitting """ -struct KenCarp3{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct KenCarp3{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -278,32 +266,30 @@ end function KenCarp3(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) KenCarp3{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, precs, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, smooth_est, extrapolant, controller, step_limiter!) end -struct CFNLIRK3{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct CFNLIRK3{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol end function CFNLIRK3(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear) CFNLIRK3{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, nlsolve, - precs, extrapolant) end @@ -322,11 +308,10 @@ publisher={ACM} Cash4: SDIRK Method An A-L stable 4th order SDIRK method """ -struct Cash4{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct Cash4{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol embedding::Int @@ -334,122 +319,111 @@ struct Cash4{CS, AD, F, F2, P, FDT, ST, CJ} <: end function Cash4(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI, embedding = 3) Cash4{ _unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), typeof(nlsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}( + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}( linsolve, nlsolve, - precs, smooth_est, extrapolant, embedding, controller) end -struct SFSDIRK4{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct SFSDIRK4{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol end function SFSDIRK4(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear) SFSDIRK4{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, nlsolve, - precs, extrapolant) end -struct SFSDIRK5{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct SFSDIRK5{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol end function SFSDIRK5(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear) SFSDIRK5{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, nlsolve, - precs, extrapolant) end -struct SFSDIRK6{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct SFSDIRK6{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol end function SFSDIRK6(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear) SFSDIRK6{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, nlsolve, - precs, extrapolant) end -struct SFSDIRK7{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct SFSDIRK7{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol end function SFSDIRK7(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear) SFSDIRK7{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, nlsolve, - precs, extrapolant) end -struct SFSDIRK8{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct SFSDIRK8{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol end function SFSDIRK8(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear) SFSDIRK8{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), + typeof(nlsolve), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(linsolve, nlsolve, - precs, extrapolant) end @@ -461,11 +435,10 @@ Springer (1996) Hairer4: SDIRK Method An A-L stable 4th order SDIRK method """ -struct Hairer4{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct Hairer4{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -473,12 +446,12 @@ end function Hairer4(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI) Hairer4{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, smooth_est, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, smooth_est, extrapolant, controller) end @@ -490,11 +463,10 @@ Springer (1996) Hairer42: SDIRK Method An A-L stable 4th order SDIRK method """ -struct Hairer42{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct Hairer42{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -502,12 +474,12 @@ end function Hairer42(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI) Hairer42{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, smooth_est, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, smooth_est, extrapolant, controller) end @@ -526,11 +498,10 @@ publisher={Springer} Kvaerno4: SDIRK Method An A-L stable stiffly-accurate 4th order ESDIRK method. """ -struct Kvaerno4{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct Kvaerno4{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -539,12 +510,12 @@ end function Kvaerno4(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) Kvaerno4{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, precs, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, smooth_est, extrapolant, controller, step_limiter!) end @@ -563,11 +534,10 @@ publisher={Springer} Kvaerno5: SDIRK Method An A-L stable stiffly-accurate 5th order ESDIRK method """ -struct Kvaerno5{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct Kvaerno5{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -576,12 +546,12 @@ end function Kvaerno5(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) Kvaerno5{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, precs, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, smooth_est, extrapolant, controller, step_limiter!) end @@ -596,11 +566,10 @@ publisher={National Aeronautics and Space Administration, Langley Research Cente KenCarp4: SDIRK Method An A-L stable stiffly-accurate 4th order ESDIRK method with splitting """ -struct KenCarp4{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct KenCarp4{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -609,12 +578,12 @@ end function KenCarp4(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) KenCarp4{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, precs, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, smooth_est, extrapolant, controller, step_limiter!) end @@ -634,11 +603,10 @@ publisher={Elsevier} KenCarp47: SDIRK Method An A-L stable stiffly-accurate 4th order seven-stage ESDIRK method with splitting """ -struct KenCarp47{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct KenCarp47{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -646,12 +614,12 @@ end function KenCarp47(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI) KenCarp47{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, smooth_est, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, smooth_est, extrapolant, controller) end @@ -666,11 +634,10 @@ publisher={National Aeronautics and Space Administration, Langley Research Cente KenCarp5: SDIRK Method An A-L stable stiffly-accurate 5th order ESDIRK method with splitting """ -struct KenCarp5{CS, AD, F, F2, P, FDT, ST, CJ, StepLimiter} <: +struct KenCarp5{CS, AD, F, F2, FDT, ST, CJ, StepLimiter} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -679,12 +646,12 @@ end function KenCarp5(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI, step_limiter! = trivial_limiter!) KenCarp5{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, precs, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac), typeof(step_limiter!)}(linsolve, nlsolve, smooth_est, extrapolant, controller, step_limiter!) end """ @@ -701,11 +668,10 @@ publisher={Elsevier} KenCarp58: SDIRK Method An A-L stable stiffly-accurate 5th order eight-stage ESDIRK method with splitting """ -struct KenCarp58{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct KenCarp58{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P smooth_est::Bool extrapolant::Symbol controller::Symbol @@ -713,32 +679,31 @@ end function KenCarp58(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), smooth_est = true, extrapolant = :linear, controller = :PI) KenCarp58{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, smooth_est, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, smooth_est, extrapolant, controller) end # `smooth_est` is not necessary, as the embedded method is also L-stable -struct ESDIRK54I8L2SA{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct ESDIRK54I8L2SA{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol end function ESDIRK54I8L2SA(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, controller = :PI) ESDIRK54I8L2SA{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, extrapolant, controller) end @@ -752,22 +717,21 @@ volume={146}, pages={221-244} } """ -struct ESDIRK436L2SA2{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct ESDIRK436L2SA2{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol end function ESDIRK436L2SA2(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, controller = :PI) ESDIRK436L2SA2{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, extrapolant, controller) end @@ -781,22 +745,21 @@ volume={146}, pages={221-244} } """ -struct ESDIRK437L2SA{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct ESDIRK437L2SA{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol end function ESDIRK437L2SA(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, controller = :PI) ESDIRK437L2SA{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, extrapolant, controller) end @@ -810,22 +773,21 @@ volume={146}, pages={221-244} } """ -struct ESDIRK547L2SA2{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct ESDIRK547L2SA2{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol end function ESDIRK547L2SA2(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, controller = :PI) ESDIRK547L2SA2{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, extrapolant, controller) end @@ -842,21 +804,20 @@ Currently has STABILITY ISSUES, causing it to fail the adaptive tests. Check issue https://github.com/SciML/OrdinaryDiffEq.jl/issues/1933 for more details. } """ -struct ESDIRK659L2SA{CS, AD, F, F2, P, FDT, ST, CJ} <: +struct ESDIRK659L2SA{CS, AD, F, F2, FDT, ST, CJ} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P extrapolant::Symbol controller::Symbol end function ESDIRK659L2SA(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), + linsolve = nothing, nlsolve = NLNewton(), extrapolant = :linear, controller = :PI) ESDIRK659L2SA{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), - typeof(nlsolve), typeof(precs), diff_type, _unwrap_val(standardtag), - _unwrap_val(concrete_jac)}(linsolve, nlsolve, precs, extrapolant, + typeof(nlsolve), diff_type, _unwrap_val(standardtag), + _unwrap_val(concrete_jac)}(linsolve, nlsolve, extrapolant, controller) end diff --git a/lib/OrdinaryDiffEqStabilizedIRK/src/algorithms.jl b/lib/OrdinaryDiffEqStabilizedIRK/src/algorithms.jl index 1a59689554..b23b397c9f 100644 --- a/lib/OrdinaryDiffEqStabilizedIRK/src/algorithms.jl +++ b/lib/OrdinaryDiffEqStabilizedIRK/src/algorithms.jl @@ -1,8 +1,7 @@ -struct IRKC{CS, AD, F, F2, P, FDT, ST, CJ, K, T, E} <: +struct IRKC{CS, AD, F, F2, FDT, ST, CJ, K, T, E} <: OrdinaryDiffEqNewtonAdaptiveAlgorithm{CS, AD, FDT, ST, CJ} linsolve::F nlsolve::F2 - precs::P κ::K tol::T extrapolant::Symbol @@ -12,11 +11,11 @@ end function IRKC(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, diff_type = Val{:forward}, - linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), κ = nothing, + linsolve = nothing, nlsolve = NLNewton(), κ = nothing, tol = nothing, extrapolant = :linear, controller = :Standard, eigen_est = nothing) IRKC{_unwrap_val(chunk_size), _unwrap_val(autodiff), typeof(linsolve), typeof(nlsolve), - typeof(precs), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), - typeof(κ), typeof(tol), typeof(eigen_est)}(linsolve, nlsolve, precs, κ, tol, + diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac), + typeof(κ), typeof(tol), typeof(eigen_est)}(linsolve, nlsolve, κ, tol, extrapolant, controller, eigen_est) end diff --git a/test/interface/default_solver_tests.jl b/test/interface/default_solver_tests.jl index 4cdef37e80..1e36a9b842 100644 --- a/test/interface/default_solver_tests.jl +++ b/test/interface/default_solver_tests.jl @@ -48,7 +48,7 @@ rosensol = solve(prob_rober, AutoTsit5(Rosenbrock23(autodiff = false))) sol = solve(prob_rober, reltol = 1e-7, abstol = 1e-7) rosensol = solve( prob_rober, AutoVern7(Rodas5P(autodiff = false)), reltol = 1e-7, abstol = 1e-7) -# test that default has the same performance as AutoTsit5(Rosenbrock23()) (which we expect it to use for this). +# test that default has the same performance as AutoTsit5(Rodas5P()) (which we expect it to use for this). @test sol.stats.naccept == rosensol.stats.naccept @test sol.stats.nf == rosensol.stats.nf @test unique(sol.alg_choice) == [2, 4] @@ -74,7 +74,7 @@ for n in (100, 600) vcat([1.0, 0.0, 0.0], ones(n)), (0.0, 100.0), (0.04, 3e7, 1e4)) sol = solve(prob_ex_rober) fsol = solve(prob_ex_rober, AutoTsit5(FBDF(; autodiff = false, linsolve))) - # test that default has the same performance as AutoTsit5(Rosenbrock23()) (which we expect it to use for this). + # test that default has the same performance as AutoTsit5(FBDF()) (which we expect it to use for this). @test sol.stats.naccept == fsol.stats.naccept @test sol.stats.nf == fsol.stats.nf @test unique(sol.alg_choice) == [1, stiffalg] diff --git a/test/interface/linear_nonlinear_tests.jl b/test/interface/linear_nonlinear_tests.jl index b948996346..e799ca2616 100644 --- a/test/interface/linear_nonlinear_tests.jl +++ b/test/interface/linear_nonlinear_tests.jl @@ -8,33 +8,22 @@ end u0 = rand(3) prob = ODEProblem(rn, u0, (0, 50.0)) -function precsl(W, du, u, p, t, newW, Plprev, Prprev, solverdata) - if newW === nothing || newW - Pl = lu(convert(AbstractMatrix, W), check = false) - else - Pl = Plprev - end - Pl, nothing +function precsl(W, p) + Pl = lu(convert(AbstractMatrix, W), check = false) + Pl, IdentityOperator(size(W, 1)) end -function precsr(W, du, u, p, t, newW, Plprev, Prprev, solverdata) - if newW === nothing || newW - Pr = lu(convert(AbstractMatrix, W), check = false) - else - Pr = Prprev - end - nothing, Pr +function precsr(W, p) + Pr = lu(convert(AbstractMatrix, W), check = false) + IdentityOperator(size(W, 1)), Pr end -function precslr(W, du, u, p, t, newW, Plprev, Prprev, solverdata) - if newW === nothing || newW - Pr = lu(convert(AbstractMatrix, W), check = false) - else - Pr = Prprev - end +function precslr(W, p) + Pr = lu(convert(AbstractMatrix, W), check = false) Pr, Pr end + sol = @test_nowarn solve(prob, TRBDF2(autodiff = false)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, @@ -45,16 +34,16 @@ solref = @test_nowarn solve(prob, smooth_est = false)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, - TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(), - precs = precsl, smooth_est = false, concrete_jac = true)); + TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(precs = precsl), + smooth_est = false, concrete_jac = true)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, - TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(), - precs = precsr, smooth_est = false, concrete_jac = true)); + TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(precs = precsr), + smooth_est = false, concrete_jac = true)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, - TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(), - precs = precslr, smooth_est = false, concrete_jac = true)); + TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(precs = precslr) + , smooth_est = false, concrete_jac = true)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, QNDF(autodiff = false, linsolve = KrylovJL_GMRES(), @@ -62,12 +51,12 @@ sol = @test_nowarn solve(prob, @test length(sol.t) < 25 sol = @test_nowarn solve(prob, Rosenbrock23(autodiff = false, - linsolve = KrylovJL_GMRES(), - precs = precslr, concrete_jac = true)); + linsolve = KrylovJL_GMRES(precs = precslr), + concrete_jac = true)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, - Rodas4(autodiff = false, linsolve = KrylovJL_GMRES(), - precs = precslr, concrete_jac = true)); + Rodas4(autodiff = false, linsolve = KrylovJL_GMRES(precs = precslr), + concrete_jac = true)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, TRBDF2(autodiff = false)); @@ -79,26 +68,26 @@ sol = @test_nowarn solve(prob, smooth_est = false)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, - TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(), - precs = precsl, smooth_est = false, concrete_jac = true)); + TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(precs = precsl), + smooth_est = false, concrete_jac = true)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, - TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(), - precs = precsr, smooth_est = false, concrete_jac = true)); + TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(precs = precsr), + smooth_est = false, concrete_jac = true)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, - TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(), - precs = precslr, smooth_est = false, concrete_jac = true)); + TRBDF2(autodiff = false, linsolve = KrylovJL_GMRES(precs = precslr), + smooth_est = false, concrete_jac = true)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, QNDF(autodiff = false, linsolve = KrylovJL_GMRES(), concrete_jac = true)); @test length(sol.t) < 25 sol = @test_nowarn solve(prob, - Rosenbrock23(autodiff = false, linsolve = KrylovJL_GMRES(), - precs = precslr, concrete_jac = true)); + Rosenbrock23(autodiff = false, linsolve = KrylovJL_GMRES(precs = precslr), + concrete_jac = true)); @test length(sol.t) < 20 sol = @test_nowarn solve(prob, - Rodas4(autodiff = false, linsolve = KrylovJL_GMRES(), - precs = precslr, concrete_jac = true)); + Rodas4(autodiff = false, linsolve = KrylovJL_GMRES(precs = precslr), + concrete_jac = true)); @test length(sol.t) < 20 diff --git a/test/interface/linear_solver_test.jl b/test/interface/linear_solver_test.jl index 12a449d603..516d5ab299 100644 --- a/test/interface/linear_solver_test.jl +++ b/test/interface/linear_solver_test.jl @@ -197,7 +197,7 @@ refsol = solve(probiip, FBDF(), abstol = 1e-12, reltol = 1e-12) @testset "$solname" for (solname, solver) in pairs(solvers) sol = solve(prob, solver, abstol = 1e-12, reltol = 1e-12, maxiters = 2e4) @test sol.retcode == ReturnCode.Success - @test isapprox(sol.u[end], refsol.u[end], rtol = 1e-8, atol = 1e-10) + @test isapprox(sol.u[end], refsol.u[end], rtol = 2e-8, atol = 1e-10) end end end @@ -207,7 +207,7 @@ end @testset "$solname" for (solname, solver) in pairs(solvers) sol = solve(prob, solver, maxiters = 2e4) @test sol.retcode == ReturnCode.Success - @test isapprox(sol.u[end], refsol.u[end], rtol = 2e-3, atol = 1e-6) + @test isapprox(sol.u[end], refsol.u[end], rtol = 5e-3, atol = 1e-6) end end end diff --git a/test/interface/preconditioners.jl b/test/interface/preconditioners.jl index 53188d1a12..c41ada32e3 100644 --- a/test/interface/preconditioners.jl +++ b/test/interface/preconditioners.jl @@ -57,38 +57,25 @@ prob_ode_brusselator_2d_sparse = ODEProblem( jac_prototype = float.(jac)), u0, (0.0, 11.5), p) -function incompletelu(W, du, u, p, t, newW, Plprev, Prprev, solverdata) - if newW === nothing || newW - Pl = ilu(convert(AbstractMatrix, W), τ = 50.0) - else - Pl = Plprev - end - Pl, nothing +function incompletelu(W, p) + Pl = ilu(convert(AbstractMatrix, W), τ = 50.0) + Pl, IdentityOperator(size(W, 1)) end -function algebraicmultigrid(W, du, u, p, t, newW, Plprev, Prprev, solverdata) - if newW === nothing || newW - Pl = AlgebraicMultigrid.aspreconditioner(AlgebraicMultigrid.ruge_stuben(convert( - AbstractMatrix, - W))) - else - Pl = Plprev - end - Pl, nothing +function algebraicmultigrid(W, p) + A = convert(AbstractMatrix, W) + Pl = AlgebraicMultigrid.aspreconditioner(AlgebraicMultigrid.ruge_stuben(A)) + Pl, IdentityOperator(size(W, 1)) end -function algebraicmultigrid2(W, du, u, p, t, newW, Plprev, Prprev, solverdata) - if newW === nothing || newW - A = convert(AbstractMatrix, W) - Pl = AlgebraicMultigrid.aspreconditioner(AlgebraicMultigrid.ruge_stuben(A, - presmoother = AlgebraicMultigrid.Jacobi(rand(size(A, - 1))), - postsmoother = AlgebraicMultigrid.Jacobi(rand(size(A, - 1))))) - else - Pl = Plprev - end - Pl, nothing +function algebraicmultigrid2(W, p) + A = convert(AbstractMatrix, W) + Pl = AlgebraicMultigrid.aspreconditioner(AlgebraicMultigrid.ruge_stuben(A, + presmoother = AlgebraicMultigrid.Jacobi(rand(size(A, + 1))), + postsmoother = AlgebraicMultigrid.Jacobi(rand(size(A, + 1))))) + Pl, IdentityOperator(size(W, 1)) end iter[] = 0 @@ -97,17 +84,17 @@ sol1 = solve(prob_ode_brusselator_2d, KenCarp47(linsolve = KrylovJL_GMRES()), iter1 = iter[]; iter[] = 0; sol2 = solve(prob_ode_brusselator_2d_sparse, - KenCarp47(linsolve = KrylovJL_GMRES(), precs = incompletelu, + KenCarp47(linsolve = KrylovJL_GMRES(precs = incompletelu), concrete_jac = true), save_everystep = false); iter2 = iter[]; iter[] = 0; sol3 = solve(prob_ode_brusselator_2d_sparse, - KenCarp47(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid, + KenCarp47(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid), concrete_jac = true), save_everystep = false); iter3 = iter[]; iter[] = 0; sol4 = solve(prob_ode_brusselator_2d_sparse, - KenCarp47(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid2, + KenCarp47(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid2), concrete_jac = true), save_everystep = false); iter4 = iter[]; iter[] = 0; @@ -126,17 +113,17 @@ sol1 = solve(prob_ode_brusselator_2d, Rosenbrock23(linsolve = KrylovJL_GMRES()), iter1 = iter[]; iter[] = 0; sol2 = solve(prob_ode_brusselator_2d_sparse, - Rosenbrock23(linsolve = KrylovJL_GMRES(), precs = incompletelu, + Rosenbrock23(linsolve = KrylovJL_GMRES(precs = incompletelu), concrete_jac = true), save_everystep = false); iter2 = iter[]; iter[] = 0; sol3 = solve(prob_ode_brusselator_2d_sparse, - Rosenbrock23(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid, + Rosenbrock23(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid), concrete_jac = true), save_everystep = false); iter3 = iter[]; iter[] = 0; sol4 = solve(prob_ode_brusselator_2d_sparse, - Rosenbrock23(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid2, + Rosenbrock23(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid2), concrete_jac = true), save_everystep = false); iter4 = iter[]; iter[] = 0; @@ -155,17 +142,17 @@ sol1 = solve(prob_ode_brusselator_2d, Rodas4(linsolve = KrylovJL_GMRES()), iter1 = iter[]; iter[] = 0; sol2 = solve(prob_ode_brusselator_2d_sparse, - Rodas4(linsolve = KrylovJL_GMRES(), precs = incompletelu, concrete_jac = true), + Rodas4(linsolve = KrylovJL_GMRES(precs = incompletelu), concrete_jac = true), save_everystep = false); iter2 = iter[]; iter[] = 0; sol3 = solve(prob_ode_brusselator_2d_sparse, - Rodas4(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid, + Rodas4(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid), concrete_jac = true), save_everystep = false); iter3 = iter[]; iter[] = 0; sol4 = solve(prob_ode_brusselator_2d_sparse, - Rodas4(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid2, + Rodas4(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid2), concrete_jac = true), save_everystep = false); iter4 = iter[]; iter[] = 0; @@ -184,17 +171,17 @@ sol1 = solve(prob_ode_brusselator_2d, Rodas5(linsolve = KrylovJL_GMRES()), iter1 = iter[]; iter[] = 0; sol2 = solve(prob_ode_brusselator_2d_sparse, - Rodas5(linsolve = KrylovJL_GMRES(), precs = incompletelu, concrete_jac = true), + Rodas5(linsolve = KrylovJL_GMRES(precs = incompletelu), concrete_jac = true), save_everystep = false); iter2 = iter[]; iter[] = 0; sol3 = solve(prob_ode_brusselator_2d_sparse, - Rodas5(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid, + Rodas5(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid), concrete_jac = true), save_everystep = false); iter3 = iter[]; iter[] = 0; sol4 = solve(prob_ode_brusselator_2d_sparse, - Rodas5(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid2, + Rodas5(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid2), concrete_jac = true), save_everystep = false); iter4 = iter[]; iter[] = 0; @@ -213,17 +200,17 @@ sol1 = solve(prob_ode_brusselator_2d, TRBDF2(linsolve = KrylovJL_GMRES()), iter1 = iter[]; iter[] = 0; sol2 = solve(prob_ode_brusselator_2d_sparse, - TRBDF2(linsolve = KrylovJL_GMRES(), precs = incompletelu, concrete_jac = true), + TRBDF2(linsolve = KrylovJL_GMRES(precs = incompletelu), concrete_jac = true), save_everystep = false); iter2 = iter[]; iter[] = 0; sol3 = solve(prob_ode_brusselator_2d_sparse, - TRBDF2(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid, + TRBDF2(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid), concrete_jac = true), save_everystep = false); iter3 = iter[]; iter[] = 0; sol4 = solve(prob_ode_brusselator_2d_sparse, - TRBDF2(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid2, + TRBDF2(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid2), concrete_jac = true), save_everystep = false); iter4 = iter[]; iter[] = 0; @@ -242,17 +229,17 @@ sol1 = solve(prob_ode_brusselator_2d, TRBDF2(linsolve = KrylovJL_GMRES()), iter1 = iter[]; iter[] = 0; sol2 = solve(prob_ode_brusselator_2d_sparse, - TRBDF2(linsolve = KrylovJL_GMRES(), precs = incompletelu, + TRBDF2(linsolve = KrylovJL_GMRES(precs = incompletelu), concrete_jac = true), save_everystep = false); iter2 = iter[]; iter[] = 0; sol3 = solve(prob_ode_brusselator_2d_sparse, - TRBDF2(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid, + TRBDF2(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid), concrete_jac = true), save_everystep = false); iter3 = iter[]; iter[] = 0; sol4 = solve(prob_ode_brusselator_2d_sparse, - TRBDF2(linsolve = KrylovJL_GMRES(), precs = algebraicmultigrid2, + TRBDF2(linsolve = KrylovJL_GMRES(precs = algebraicmultigrid2), concrete_jac = true), save_everystep = false); iter4 = iter[]; iter[] = 0;