From 1f88d7fd6b88844d55cfdf91ff3971b31d9897ac Mon Sep 17 00:00:00 2001 From: Aayush Sabharwal Date: Thu, 1 Feb 2024 17:49:18 +0530 Subject: [PATCH] refactor: deprecate `syms`, `paramsyms`, `indepsym` for `SciMLFunction`s --- src/scimlfunctions.jl | 180 +----------------------------------------- 1 file changed, 3 insertions(+), 177 deletions(-) diff --git a/src/scimlfunctions.jl b/src/scimlfunctions.jl index bd6912abe0..1027aaea3b 100644 --- a/src/scimlfunctions.jl +++ b/src/scimlfunctions.jl @@ -255,9 +255,6 @@ ODEFunction{iip,specialize}(f; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -286,14 +283,6 @@ the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,p,t)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -466,9 +455,6 @@ SplitFunction{iip,specialize}(f1,f2; jac_prototype = __has_jac_prototype(f1) ? f1.jac_prototype : nothing, sparsity = __has_sparsity(f1) ? f1.sparsity : jac_prototype, paramjac = __has_paramjac(f1) ? f1.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f1) ? f1.colorvec : nothing, sys = __has_sys(f1) ? f1.sys : nothing) ``` @@ -497,14 +483,6 @@ the usage of the `SplitFunction`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,p,t)`: returns the parameter Jacobian ``\frac{df_1}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -594,9 +572,6 @@ DynamicalODEFunction{iip,specialize}(f1,f2; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -627,14 +602,6 @@ the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,p,t)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -707,9 +674,6 @@ DDEFunction{iip,specialize}(f; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -740,14 +704,6 @@ the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,h,u,p,t)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -822,9 +778,6 @@ DynamicalDDEFunction{iip,specialize}(f1,f2; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -857,14 +810,6 @@ the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,h,p,t)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -929,10 +874,7 @@ with respect to time, and more. For all cases, `u0` is the initial condition, ```julia DiscreteFunction{iip,specialize}(f; - analytic = __has_analytic(f) ? f.analytic : nothing, - syms = nothing - indepsym = nothing, - paramsyms = nothing) + analytic = __has_analytic(f) ? f.analytic : nothing) ``` Note that only the function `f` itself is required. This function should @@ -944,14 +886,6 @@ the usage of `f`. These include: - `analytic(u0,p,t)`: used to pass an analytical solution function for the analytical solution of the ODE. Generally only used for testing and development of the solvers. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. ## iip: In-Place vs Out-Of-Place @@ -996,10 +930,7 @@ dt: the time step ```julia ImplicitDiscreteFunction{iip,specialize}(f; - analytic = __has_analytic(f) ? f.analytic : nothing, - syms = nothing - indepsym = nothing, - paramsyms = nothing) + analytic = __has_analytic(f) ? f.analytic : nothing) ``` Note that only the function `f` itself is required. This function should @@ -1011,14 +942,6 @@ the usage of `f`. These include: - `analytic(u0,p,t)`: used to pass an analytical solution function for the analytical solution of the ODE. Generally only used for testing and development of the solvers. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. ## iip: In-Place vs Out-Of-Place @@ -1074,9 +997,6 @@ SDEFunction{iip,specialize}(f,g; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -1107,14 +1027,6 @@ the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,p,t)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -1192,9 +1104,6 @@ SplitSDEFunction{iip,specialize}(f1,f2,g; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -1221,14 +1130,6 @@ are optional for improving or accelerating the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,p,t)`: returns the parameter Jacobian ``\frac{df_1}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -1313,9 +1214,6 @@ DynamicalSDEFunction{iip,specialize}(f1,f2; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -1348,11 +1246,6 @@ the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,p,t)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -1430,9 +1323,6 @@ RODEFunction{iip,specialize}(f; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing, analytic_full = __has_analytic_full(f) ? f.analytic_full : false) @@ -1468,14 +1358,6 @@ the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,p,t,W)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -1546,9 +1428,6 @@ DAEFunction{iip,specialize}(f; vjp = __has_vjp(f) ? f.vjp : nothing, jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -1573,14 +1452,6 @@ the usage of `f`. These include: as the prototype and integrators will specialize on this structure where possible. Non-structured sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -1699,9 +1570,6 @@ SDDEFunction{iip,specialize}(f,g; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing sys = __has_sys(f) ? f.sys : nothing) ``` @@ -1732,14 +1600,6 @@ the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,h,u,p,t)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -1812,8 +1672,6 @@ NonlinearFunction{iip, specialize}(f; jac_prototype = __has_jac_prototype(f) ? f.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -1836,12 +1694,6 @@ the usage of `f`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,p)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -1905,8 +1757,6 @@ interval variable. ```julia IntervalNonlinearFunction{iip, specialize}(f; analytic = __has_analytic(f) ? f.analytic : nothing, - syms = nothing, - paramsyms = nothing, sys = __has_sys(f) ? f.sys : nothing) ``` @@ -1919,12 +1769,6 @@ the usage of `f`. These include: - `analytic(p)`: used to pass an analytical solution function for the analytical solution of the ODE. Generally only used for testing and development of the solvers. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. ## iip: In-Place vs Out-Of-Place @@ -1970,8 +1814,6 @@ OptimizationFunction{iip}(f, adtype::AbstractADType = NoAD(); hess_prototype = nothing, cons_jac_prototype = nothing, cons_hess_prototype = nothing, - syms = nothing, - paramsyms = nothing, observed = __has_observed(f) ? f.observed : DEFAULT_OBSERVED_NO_TIME, lag_h = nothing, hess_colorvec = __has_colorvec(f) ? f.colorvec : nothing, @@ -2036,12 +1878,6 @@ function described in [Callback Functions](https://docs.sciml.ai/Optimization/st When [Symbolic Problem Building with ModelingToolkit](https://docs.sciml.ai/Optimization/stable/tutorials/symbolic/) interface is used the following arguments are also relevant: -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `observed`: an algebraic combination of optimization variables that is of interest to the user which will be available in the solution. This can be single or multiple expressions. - `sys`: field that stores the `OptimizationSystem`. @@ -2142,9 +1978,6 @@ BVPFunction{iip,specialize}(f, bc; bcjac_prototype = __has_jac_prototype(bc) ? bc.jac_prototype : nothing, sparsity = __has_sparsity(f) ? f.sparsity : jac_prototype, paramjac = __has_paramjac(f) ? f.paramjac : nothing, - syms = nothing, - indepsym= nothing, - paramsyms = nothing, colorvec = __has_colorvec(f) ? f.colorvec : nothing, bccolorvec = __has_colorvec(f) ? bc.colorvec : nothing, sys = __has_sys(f) ? f.sys : nothing) @@ -2180,14 +2013,6 @@ the usage of `f` and `bc`. These include: sparsity patterns should use a `SparseMatrixCSC` with a correct sparsity pattern for the Jacobian. The default is `nothing`, which means a dense Jacobian. - `paramjac(pJ,u,p,t)`: returns the parameter Jacobian ``\frac{df}{dp}``. -- `syms`: the symbol names for the elements of the equation. This should match `u0` in size. For - example, if `u0 = [0.0,1.0]` and `syms = [:x, :y]`, this will apply a canonical naming to the - values, allowing `sol[:x]` in the solution and automatically naming values in plots. -- `indepsym`: the canonical naming for the independent variable. Defaults to nothing, which - internally uses `t` as the representation in any plots. -- `paramsyms`: the symbol names for the parameters of the equation. This should match `p` in - size. For example, if `p = [0.0, 1.0]` and `paramsyms = [:a, :b]`, this will apply a canonical - naming to the values, allowing `sol[:a]` in the solution. - `colorvec`: a color vector according to the SparseDiffTools.jl definition for the sparsity pattern of the `jac_prototype`. This specializes the Jacobian construction when using finite differences and automatic differentiation to be computed in an accelerated manner @@ -4069,6 +3894,7 @@ end function sys_or_symbolcache(sys, syms, paramsyms, indepsym = nothing) if sys === nothing && (syms !== nothing || paramsyms !== nothing || indepsym !== nothing) + @warn "The use of keyword arguments `syms`, `paramsyms` and `indepsym` for `SciMLFunction`s is deprecated. Pass `sys = SymbolCache(syms, paramsyms, indepsym)` instead." sys = SymbolCache(syms, paramsyms, indepsym) end return sys