diff --git a/src/problems/basic_problems.jl b/src/problems/basic_problems.jl index 41a27a137..0401dc228 100644 --- a/src/problems/basic_problems.jl +++ b/src/problems/basic_problems.jl @@ -335,27 +335,18 @@ which are `Number`s or `AbstractVector`s with the same geometry as `u`. ### Constructors ``` +IntegralProblem(f,domain,p=NullParameters(); + nout=1, batch = 0, kwargs...) IntegralProblem(f,lb,ub,p=NullParameters(); nout=1, batch = 0, kwargs...) ``` - f: the integrand, callable function `y = f(u,p)` for out-of-place (default) or an - `IntegralFunction` or `BatchIntegralFunction` for inplace and batching alternatives. + `IntegralFunction` or `BatchIntegralFunction` for inplace and batching optimizations. +- domain: an object representing an integration domain, i.e. the tuple `(lb, ub)`. - lb: Either a number or vector of lower bounds. - ub: Either a number or vector of upper bounds. - p: The parameters associated with the problem. -- nout: The output size of the function f. Defaults to 1, i.e., a scalar valued function. - If `nout > 1` f is a vector valued function . -- batch: The preferred number of points to batch. This allows user-side parallelization - of the integrand. If `batch == 0` no batching is performed. - If `batch > 0` both `u` and `y` get an additional dimension added to it. - This means that: - if `f` is a multi variable function each `u[:,i]` is a different point to evaluate `f` at, - if `f` is a single variable function each `u[i]` is a different point to evaluate `f` at, - if `f` is a vector valued function each `y[:,i]` is the evaluation of `f` at a different point, - if `f` is a scalar valued function `y[i]` is the evaluation of `f` at a different point. - Note that batch is a suggestion for the number of points, - and it is not necessarily true that batch is the same as batchsize in all algorithms. - kwargs: Keyword arguments copied to the solvers. Additionally, we can supply iip like IntegralProblem{iip}(...) as true or false to declare at @@ -365,33 +356,30 @@ compile time whether the integrator function is in-place. The fields match the names of the constructor arguments. """ -struct IntegralProblem{isinplace, P, F, B, K} <: AbstractIntegralProblem{isinplace} +struct IntegralProblem{isinplace, P, F, T, K} <: AbstractIntegralProblem{isinplace} f::F - lb::B - ub::B - nout::Int + domain::T p::P - batch::Int kwargs::K - @add_kwonly function IntegralProblem{iip}(f::AbstractIntegralFunction{iip}, lb, ub, p = NullParameters(); - nout = 1, - batch = 0, kwargs...) where {iip} - @assert typeof(lb)==typeof(ub) "Type of lower and upper bound must match" + @add_kwonly function IntegralProblem{iip}(f::AbstractIntegralFunction{iip}, domain, p = NullParameters(); + kwargs...) where {iip} warn_paramtype(p) - new{iip, typeof(p), typeof(f), typeof(lb), typeof(kwargs)}(f, - lb, ub, nout, p, - batch, kwargs) + new{iip, typeof(p), typeof(f), typeof(domain), typeof(kwargs)}(f, + domain, p, kwargs) end end TruncatedStacktraces.@truncate_stacktrace IntegralProblem 1 4 -function IntegralProblem(f::AbstractIntegralFunction, lb, ub, p = NullParameters(); kwargs...) - IntegralProblem{isinplace(f)}(f, lb, ub, p; kwargs...) +function IntegralProblem(f::AbstractIntegralFunction, domain, p = NullParameters(); kwargs...) + IntegralProblem{isinplace(f)}(f, domain, p; kwargs...) end -function IntegralProblem(f, lb, ub, p = NullParameters(); kwargs...) - IntegralProblem(IntegralFunction(f), lb, ub, p; kwargs...) +function IntegralProblem(f::AbstractIntegralFunction, lb::B, ub::B, p = NullParameters(); kwargs...) where {B} + IntegralProblem(f, (lb, ub), p; kwargs...) +end +function IntegralProblem(f, args...; kwargs...) + IntegralProblem(IntegralFunction(f), args...; kwargs...) end struct QuadratureProblem end