diff --git a/src/problems/basic_problems.jl b/src/problems/basic_problems.jl index 727d4b605..993af4418 100644 --- a/src/problems/basic_problems.jl +++ b/src/problems/basic_problems.jl @@ -426,8 +426,8 @@ IntegralProblem(f,lb,ub,p=NullParameters(); nout=nothing, batch=nothing, kwargs. - f: the integrand, callable function `y = f(u,p)` for out-of-place (default) or an `IntegralFunction` or `BatchIntegralFunction` for inplace and batching optimizations. - domain: an object representing an integration domain, i.e. the tuple `(lb, ub)`. -- lb: Either a number or vector of lower bounds. -- ub: Either a number or vector of upper bounds. +- lb: DEPRECATED: Either a number or vector of lower bounds. +- ub: DEPRECATED: Either a number or vector of upper bounds. - p: The parameters associated with the problem. - nout: DEPRECATED (see `IntegralFunction`): length of the vector output of the integrand (by default the integrand is assumed to be scalar) @@ -465,13 +465,10 @@ function IntegralProblem(f::AbstractIntegralFunction, IntegralProblem{isinplace(f)}(f, domain, p; kwargs...) end -function IntegralProblem(f::AbstractIntegralFunction, - lb::B, - ub::B, - p = NullParameters(); - kwargs...) where {B} - IntegralProblem{isinplace(f)}(f, (lb, ub), p; kwargs...) -end +@deprecate IntegralProblem(f::AbstractIntegralFunction, + lb::Union{Number,AbstractVector{<:Number}}, + ub::Union{Number,AbstractVector{<:Number}}, + p = NullParameters(); kwargs...) IntegralProblem(f, promote(lb, ub), p; kwargs...) function IntegralProblem(f, args...; nout = nothing, batch = nothing, kwargs...) if nout !== nothing || batch !== nothing @@ -615,8 +612,8 @@ They should be an `AbstractArray` matching the geometry of `u`, where `(lcons[i] are the lower and upper bounds for `cons[i]`. The `f` in the `OptimizationProblem` should typically be an instance of [`OptimizationFunction`](https://docs.sciml.ai/Optimization/stable/API/optimization_function/#optfunction) -to specify the objective function and its derivatives either by passing -predefined functions for them or automatically generated using the [ADType](https://github.com/SciML/ADTypes.jl). +to specify the objective function and its derivatives either by passing +predefined functions for them or automatically generated using the [ADType](https://github.com/SciML/ADTypes.jl). If `f` is a standard Julia function, it is automatically transformed into an `OptimizationFunction` with `NoAD()`, meaning the derivative functions are not