diff --git a/Project.toml b/Project.toml index a5e59587e..b2f918c20 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "SciMLBase" uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462" authors = ["Chris Rackauckas and contributors"] -version = "2.19.0" +version = "2.19.1" [deps] ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b" diff --git a/src/problems/basic_problems.jl b/src/problems/basic_problems.jl index cd35498a5..a37ba0c54 100644 --- a/src/problems/basic_problems.jl +++ b/src/problems/basic_problems.jl @@ -87,7 +87,7 @@ struct StandardNonlinearProblem end @doc doc""" Defines an interval nonlinear system problem. -Documentation Page: https://docs.sciml.ai/NonlinearSolve/stable/basics/NonlinearProblem/ +Documentation Page: [https://docs.sciml.ai/NonlinearSolve/stable/basics/NonlinearProblem/](https://docs.sciml.ai/NonlinearSolve/stable/basics/NonlinearProblem/) ## Mathematical Specification of an Interval Nonlinear Problem @@ -98,7 +98,7 @@ which defines the nonlinear system: f(t,p) = u = 0 ``` -along with an interval `tspan`, ``t \\in [t_0,t_f]``, within which the root should be found. +along with an interval `tspan`, ``t \in [t_0,t_f]``, within which the root should be found. `f` should be specified as `f(t,p)` (or in-place as `f(u,t,p)`), and `tspan` should be a `Tuple{T,T} where T <: Number`. @@ -114,8 +114,8 @@ along with an interval `tspan`, ``t \\in [t_0,t_f]``, within which the root shou ### Constructors ```julia -IntervalNonlinearProblem(f::NonlinearFunction,tspan,p=NullParameters();kwargs...) -IntervalNonlinearProblem{isinplace}(f,tspan,p=NullParameters();kwargs...) +IntervalNonlinearProblem(f::NonlinearFunction, tspan, p = NullParameters(); kwargs...) +IntervalNonlinearProblem{isinplace}(f, tspan, p = NullParameters(); kwargs...) ``` `isinplace` optionally sets whether the function is in-place or not. This is @@ -188,7 +188,7 @@ end @doc doc""" Defines a nonlinear system problem. -Documentation Page: https://docs.sciml.ai/NonlinearSolve/stable/basics/NonlinearProblem/ +Documentation Page: [https://docs.sciml.ai/NonlinearSolve/stable/basics/NonlinearProblem/](https://docs.sciml.ai/NonlinearSolve/stable/basics/NonlinearProblem/) ## Mathematical Specification of a Nonlinear Problem @@ -199,8 +199,8 @@ which defines the nonlinear system: f(u,p) = 0 ``` -and an initial guess ``u₀`` of where `f(u,p)=0`. `f` should be specified as `f(u,p)` -(or in-place as `f(du,u,p)`), and `u₀` should be an AbstractArray (or number) +and an initial guess ``u₀`` of where `f(u, p) = 0`. `f` should be specified as `f(u, p)` +(or in-place as `f(du, u, p)`), and `u₀` should be an AbstractArray (or number) whose geometry matches the desired geometry of `u`. Note that we are not limited to numbers or vectors for `u₀`; one is allowed to provide `u₀` as arbitrary matrices / higher-dimension tensors as well. @@ -210,8 +210,8 @@ matrices / higher-dimension tensors as well. ### Constructors ```julia -NonlinearProblem(f::NonlinearFunction,u0,p=NullParameters();kwargs...) -NonlinearProblem{isinplace}(f,u0,p=NullParameters();kwargs...) +NonlinearProblem(f::NonlinearFunction, u0, p = NullParameters(); kwargs...) +NonlinearProblem{isinplace}(f, u0, p = NullParameters(); kwargs...) ``` `isinplace` optionally sets whether the function is in-place or not. This is @@ -223,8 +223,8 @@ parameters. Any extra keyword arguments are passed on to the solvers. For exampl if you set a `callback` in the problem, then that `callback` will be added in every solve call. -For specifying Jacobians and mass matrices, see the [NonlinearFunctions](@ref nonlinearfunctions) -page. +For specifying Jacobians and mass matrices, see the +[NonlinearFunctions](@ref nonlinearfunctions) page. ### Fields @@ -328,7 +328,7 @@ nonlinear system: ``` and an initial guess ``u_0`` for the minimization problem. ``f`` should be specified as -``f(u, p)`` (or in-place as ``f(du, u, p)``), and ``u_0``` should be an AbstractArray (or +``f(u, p)`` (or in-place as ``f(du, u, p)``), and ``u_0`` should be an AbstractArray (or number) whose geometry matches the desired geometry of ``u``. Note that we are not limited to numbers or vectors for ``u_0``; one is allowed to provide ``u_0`` as arbitrary matrices / higher-dimension tensors as well. @@ -338,8 +338,8 @@ matrices / higher-dimension tensors as well. ### Constructors ```julia -NonlinearLeastSquaresProblem(f::NonlinearFunction, u0, p=NullParameters(); kwargs...) -NonlinearLeastSquaresProblem{isinplace}(f, u0, p=NullParameters(); kwargs...) +NonlinearLeastSquaresProblem(f::NonlinearFunction, u0, p = NullParameters(); kwargs...) +NonlinearLeastSquaresProblem{isinplace}(f, u0, p = NullParameters(); kwargs...) ``` `isinplace` optionally sets whether the function is in-place or not. This is diff --git a/src/problems/steady_state_problems.jl b/src/problems/steady_state_problems.jl index c963db916..376b139b2 100644 --- a/src/problems/steady_state_problems.jl +++ b/src/problems/steady_state_problems.jl @@ -1,7 +1,7 @@ @doc doc""" Defines a steady state ODE problem. -Documentation Page: https://docs.sciml.ai/DiffEqDocs/stable/types/steady_state_types/ +Documentation Page: [https://docs.sciml.ai/DiffEqDocs/stable/types/steady_state_types/](https://docs.sciml.ai/DiffEqDocs/stable/types/steady_state_types/) ## Mathematical Specification of a Steady State Problem @@ -9,27 +9,27 @@ To define a Steady State Problem, you simply need to give the function ``f`` which defines the ODE: ```math -\frac{du}{dt} = f(u,p,t) +\frac{du}{dt} = f(u, p, t) ``` -and an initial guess ``u_0`` of where `f(u,p,t)=0`. `f` should be specified as `f(u,p,t)` -(or in-place as `f(du,u,p,t)`), and `u₀` should be an AbstractArray (or number) -whose geometry matches the desired geometry of `u`. Note that we are not limited +and an initial guess ``u_0`` of where `f(u, p, t) = 0`. `f` should be specified as +`f(u, p, t)` (or in-place as `f(du, u, p, t)`), and `u₀` should be an AbstractArray +(or number) whose geometry matches the desired geometry of `u`. Note that we are not limited to numbers or vectors for `u₀`; one is allowed to provide `u₀` as arbitrary matrices / higher dimension tensors as well. Note that for the steady-state to be defined, we must have that `f` is autonomous, that is `f` is independent of `t`. But the form which matches the standard ODE solver should still be used. The steady state solvers interpret the `f` by -fixing ``t=\\infty``. +fixing ``t = \infty``. ## Problem Type ### Constructors ```julia -SteadyStateProblem(f::ODEFunction,u0,p=NullParameters();kwargs...) -SteadyStateProblem{isinplace,specialize}(f,u0,p=NullParameters();kwargs...) +SteadyStateProblem(f::ODEFunction, u0, p = NullParameters(); kwargs...) +SteadyStateProblem{isinplace, specialize}(f, u0, p = NullParameters(); kwargs...) ``` `isinplace` optionally sets whether the function is inplace or not. This is