diff --git a/Project.toml b/Project.toml index 528576d..c41ed44 100644 --- a/Project.toml +++ b/Project.toml @@ -23,14 +23,14 @@ Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" Aqua = "0.8" BenchmarkTools = "1" ComponentArrays = "0.15" +Cuba = "2" +Cubature = "1.5" DiffEqBase = "6.100" DiffEqNoiseProcess = "5" Distributions = "0.23, 0.24, 0.25" FiniteDiff = "2" ForwardDiff = "0.10" -Integrals = "3.1" -IntegralsCuba = "0.2" -IntegralsCubature = "0.2" +Integrals = "4" KernelDensity = "0.6" LinearAlgebra = "1" OrdinaryDiffEq = "6" @@ -56,11 +56,11 @@ julia = "1.6" Aqua = "4c88cf16-eb10-579e-8560-4a9242c79595" BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66" +Cuba = "8a292aeb-7a57-582c-b821-06e4c11590b1" +Cubature = "667455a9-e2ce-5579-9412-b964f529a492" FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" Integrals = "de52edbc-65ea-441a-8357-d3a637375a31" -IntegralsCuba = "e00cd5f1-6337-4131-8b37-28b2fe4cd6cb" -IntegralsCubature = "c31f79ba-6e32-46d4-a52f-182a8ac42a54" OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" PkgBenchmark = "32113eaa-f34f-5b0d-bd6c-c81e245fc73d" @@ -74,4 +74,4 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" TestExtras = "5ed8adda-3752-4e41-b88a-e8b09835ee3a" [targets] -test = ["Test", "Aqua", "SafeTestsets", "TestExtras", "Pkg", "PkgBenchmark", "BenchmarkTools", "ReferenceTests", "SymPy", "Random", "OrdinaryDiffEq", "ComponentArrays", "ForwardDiff", "Integrals", "IntegralsCubature", "IntegralsCuba", "FiniteDiff", "RecursiveArrayTools", "StochasticDiffEq"] +test = ["Test", "Aqua", "SafeTestsets", "TestExtras", "Pkg", "PkgBenchmark", "BenchmarkTools", "ReferenceTests", "SymPy", "Random", "OrdinaryDiffEq", "ComponentArrays", "ForwardDiff", "Integrals", "Cubature", "Cuba", "FiniteDiff", "RecursiveArrayTools", "StochasticDiffEq"] diff --git a/docs/src/tutorials/gpu_bayesian.md b/docs/src/tutorials/gpu_bayesian.md index 3b5af9f..39c3c11 100644 --- a/docs/src/tutorials/gpu_bayesian.md +++ b/docs/src/tutorials/gpu_bayesian.md @@ -22,7 +22,7 @@ Let's start by importing all the necessary libraries: using OrdinaryDiffEq using Turing, MCMCChains, Distributions using KernelDensity -using SciMLExpectations, IntegralsCuba +using SciMLExpectations, Cuba using DiffEqGPU using Plots, StatsPlots using Random; diff --git a/docs/src/tutorials/introduction.md b/docs/src/tutorials/introduction.md index 80be7ad..27f9291 100644 --- a/docs/src/tutorials/introduction.md +++ b/docs/src/tutorials/introduction.md @@ -367,7 +367,7 @@ It is also possible to solve the various simulations in parallel by using the `b The default quadrature algorithm to solve `ExpectationProblem` does not support batch-mode evaluation. So, we first load dependencies for additional quadrature algorithms ```@example introduction -using IntegralsCuba +using Cuba ``` We then solve our expectation as before, using a `batch=10` multi-thread parallelization via `EnsembleThreads()` of Cuba's SUAVE algorithm. We also introduce additional uncertainty in the model parameter. diff --git a/docs/src/tutorials/process_noise.md b/docs/src/tutorials/process_noise.md index 714a215..b7c3696 100644 --- a/docs/src/tutorials/process_noise.md +++ b/docs/src/tutorials/process_noise.md @@ -5,7 +5,7 @@ This done by representing the Wiener process using the [Kosambi–Karhunen–Lo ```@example process_noise using SciMLExpectations -using IntegralsCuba +using Cuba using StochasticDiffEq using DiffEqNoiseProcess using Distributions diff --git a/src/expectation.jl b/src/expectation.jl index b21d5ba..edb6fde 100644 --- a/src/expectation.jl +++ b/src/expectation.jl @@ -226,7 +226,8 @@ function integrate(quadalg, adalg::AbstractExpectationADAlgorithm, f, lb::TB, ub nout = 1, batch = 0, kwargs...) where {TB} #TODO check batch iip type stability w/ IntegralProblem{XXXX} - prob = IntegralProblem{batch > 0}(f, lb, ub, p; nout = nout, batch = batch) + batch = batch==0 ? nothing : batch + prob = IntegralProblem(f, lb, ub, p; nout = nout, batch = batch) solve(prob, quadalg; kwargs...) end diff --git a/src/system_utils.jl b/src/system_utils.jl index 993a536..f1c60aa 100644 --- a/src/system_utils.jl +++ b/src/system_utils.jl @@ -26,12 +26,6 @@ function SystemMap(prob, alg::SciMLBase.AbstractODEAlgorithm, SystemMap(prob, alg, ensemblealg, kwargs) end -function (sm::SystemMap{DT})(u0, p) where {DT} - prob::DT = remake(sm.prob, - u0 = convert(typeof(sm.prob.u0), u0), - p = convert(typeof(sm.prob.p), p)) - solve(prob, sm.alg; sm.kwargs...) -end """ ```julia diff --git a/test/processnoise.jl b/test/processnoise.jl index a3375b2..5ad57f2 100644 --- a/test/processnoise.jl +++ b/test/processnoise.jl @@ -1,7 +1,7 @@ using Test, TestExtras using SciMLExpectations -using IntegralsCuba +using Cuba using StochasticDiffEq using DiffEqNoiseProcess using Distributions diff --git a/test/solve.jl b/test/solve.jl index 10bc5f6..a80b4b0 100644 --- a/test/solve.jl +++ b/test/solve.jl @@ -1,6 +1,6 @@ using Test, TestExtras, SciMLExpectations, OrdinaryDiffEq, Distributions, - Integrals, IntegralsCubature, IntegralsCuba, + Integrals, Cubature, Cuba, StaticArrays, ComponentArrays, Random quadalgs = [